Nanomechanics of Materials: Overview

  • Ting ZhuEmail author
  • Dengke Chen
Living reference work entry


Recent experiments on nanoscale and nanostructured materials, including nanowires, nanopillars, nanoparticles, nanocrystalline, and two-dimensional (2D) materials, have revealed a host of “ultra-strength” phenomena, defined by stresses in the material generally rising up to a significant fraction of the ideal strength – the highest achievable strength of a defect-free crystal. Understanding the “ultra-strength” phenomena requires an in-depth study that integrates the nanomechanical experiment and modeling. Here we present an overview on the strength-controlling deformation mechanisms as well as the nanomechanical modeling studies for ultra-strength materials. The general concepts and principles are described, with a particular emphasis on the size, temperature, and strain-rate dependence of the ultra-strength phenomena. The chapters in this Section of the Handbook are reviewed to highlight recent progress in the nanomechanical modeling of ultra-strength materials. Perspectives on the future study of nanomechanics of materials are discussed.


  1. Asaro RJ, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3382CrossRefGoogle Scholar
  2. Bei H, Gao YF, Shim S, George EP, Pharr GM (2008) Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys Rev B 77:060103ADSCrossRefGoogle Scholar
  3. Belytschko T, Xiao SP, Schatz GC, Ruoff RS (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430ADSCrossRefGoogle Scholar
  4. Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277ADSCrossRefGoogle Scholar
  5. Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065CrossRefGoogle Scholar
  6. Dumitrica T, Hua M, Yakobson BI (2006) Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc Natl Acad Sci U S A 103:6105–6109ADSCrossRefGoogle Scholar
  7. Freund LB, Suresh S (2003) Thin film materials: stress, defect formation and surface evolution. Cambridge University Press, CambridgezbMATHGoogle Scholar
  8. Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, New YorkGoogle Scholar
  9. Gouldstone A, Van Vliet KJ, Suresh S (2001) Simulation of defect nucleation in a crystal. Nature 411:656ADSCrossRefGoogle Scholar
  10. Greer JR, Nix WD (2006) Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B 73:245410ADSCrossRefGoogle Scholar
  11. Han XD, Zheng K, Zhang YF, Zhang XN, Zhang Z, Wang ZL (2007) Low-temperature in situ large-strain plasticity of silicon nanowires. Adv Mater 19:2112–2118CrossRefGoogle Scholar
  12. Hart EW (1967) Theory of the tensile test. Acta Metall 15:351–355CrossRefGoogle Scholar
  13. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904ADSCrossRefGoogle Scholar
  14. Hill R (1975) On the elasticity and stability of perfect crystals at finite strain. Math Proc Camb Philos Soc 77:225–240MathSciNetCrossRefGoogle Scholar
  15. Kang K, Cai W (2007) Brittle and ductile fracture of semiconductor nanowires – molecular dynamics simulations. Philos Mag 87:2169–2189ADSCrossRefGoogle Scholar
  16. Kraft O, Freund LB, Phillips R, Arzt E (2002) Dislocation plasticity in thin metal films. MRS Bull 27:30–37CrossRefGoogle Scholar
  17. Li J, Van Vliet KJ, Zhu T, Yip S, Suresh S (2002) Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418:307–310ADSCrossRefGoogle Scholar
  18. Li T, Morris JW, Nagasako N, Kuramoto S, Chrzan DC (2007) “Ideal” engineering alloys. Phys Rev Lett 98:105503ADSCrossRefGoogle Scholar
  19. Lu L, Shen YF, Chen XH, Qian LH, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426ADSCrossRefGoogle Scholar
  20. Lu L, Schwaiger R, Shan ZW, Dao M, Lu K, Suresh S (2005) Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater 53:2169–2179CrossRefGoogle Scholar
  21. Ma E, Zhu T (2017) Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today 20:323–331CrossRefGoogle Scholar
  22. Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824CrossRefGoogle Scholar
  23. Ogata S, Li J, Yip S (2002) Ideal pure shear strength of aluminum and copper. Science 298:807–811ADSCrossRefGoogle Scholar
  24. Ogata S, Li J, Hirosaki N, Shibutani Y, Yip S (2004) Ideal shear strain of metals and ceramics. Phys Rev B 70:104104ADSCrossRefGoogle Scholar
  25. Park HS, Klein PA (2007) Surface Cauchy-Born analysis of surface stress effects on metallic nanowires. Phys Rev B 75:085408ADSCrossRefGoogle Scholar
  26. Schall P, Cohen I, Weitz D, Spaepen F (2006) Visualizing dislocation nucleation by indenting colloidal crystals. Nature 440:319–323ADSCrossRefGoogle Scholar
  27. Shan ZW, Mishra RK, Asif SAS, Warren OL, Minor AM (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7:115–119ADSCrossRefGoogle Scholar
  28. Van Swygenhoven H, Derlet PM, Froseth AG (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3:399–403ADSCrossRefGoogle Scholar
  29. Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3:121–127ADSCrossRefGoogle Scholar
  30. Volkert CA, Lilleodden ET (2006) Size effects in the deformation of sub-micron Au columns. Philos Mag 86:5567–5579ADSCrossRefGoogle Scholar
  31. Volkert CA, Lilleodden ET, Kramer D, Weissmuller J (2006) Approaching the theoretical strength in nanoporous Au. Appl Phys Lett 89:061920ADSCrossRefGoogle Scholar
  32. Warner DH, Curtin WA, Qu S (2007) Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. Nat Mater 6:876–881ADSCrossRefGoogle Scholar
  33. Zhu T, Li J, Samanta A, Kim HG, Suresh S (2007) Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc Natl Acad Sci U S A 104:3031–3036ADSCrossRefGoogle Scholar
  34. Zhu T, Li J, Samanta A, Leach A, Gall K (2008) Temperature and strain-rate dependence of surface dislocation nucleation. Phys Rev Lett 100:025502ADSCrossRefGoogle Scholar
  35. Zhu T, Li J, Ogata S, Yip S (2009) Mechanics of ultra-strength materials. MRS Bull 34:167–172CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Section editors and affiliations

  • Ting Zhu
    • 1
  1. 1.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations