Advertisement

Nanoscale Composition-Texture-Property-Relation in Calcium-Silicate-Hydrates

  • Mohammad Javad Abdolhosseini Qomi
  • Mathieu Bauchy
  • Roland J. -M. Pellenq
Living reference work entry

Abstract

The more than 20 billion tons of concrete, produced every year, is responsible for 5–7% of global anthropogenic carbon dioxide emissions. Yet, there is no other viable material that can substitute concrete to meet the need for civil infrastructure in the developed and developing countries. This leaves reducing concrete’s carbon footprint as the only path forward to meet environmental targets. The strength and durability properties of concrete rely on the calcium-silicate-hydrate (CSH) phase that forms during cement hydration. Controlling the structure and properties of CSH phase is challenging, due to the intrinsic multiscale complexity of this hydration product that spans several orders of magnitude in length scale (from nanometers to microns). The existing lack in scientifically consistent insights into structure and properties of CSH has been the major obstacle to the development of greener formulations of modern concrete. In this chapter, we review how bridging general concepts from condense matter physics to cement and concrete research has revolutionized our contemporary understanding of the CSH phase and its making-up at the nanoscale, redefining this ubiquitous material described simultaneously as a spanning space continuous matrix and as a cohesive granular material that degrades and creeps over time.

Notes

Acknowledgments

This work was carried out with sponsorships provided by the A*MIDEX, the Aix-Marseille University Idex foundation, and the CSHub@MIT (thanks to the Portland Cement Association (PCA) and the Ready Mixed Concrete (RMC) Research & Education Foundation). Partial financial support was also provided by National Science Foundation under Grant No. 1562066, Award No. CMMI-1826122.

References

  1. Abdolhosseini Qomi MJ, Ulm F-J, Pellenq RJ-M (2012) Evidence on the dual nature of aluminum in the calcium-silicate-hydrates based on atomistic simulations. J Am Ceram Soc 95(3):1128–1137Google Scholar
  2. Abdolhosseini Qomi MJ, Bauchy M, Ulm F-J, Pellenq RJ-M (2014a) Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates. J~Chem Phys 140(5):054515ADSCrossRefGoogle Scholar
  3. Abdolhosseini Qomi MJ, Krakowiak KJ, Bauchy M, Stewart KL, Shahsavari R, Jagannathan D, Brommer DB, Baronnet A, Buehler MJ, Yip S, Ulm F-J, Van Vliet KJ, Pellenq RJ-M (2014b) Combinatorial molecular optimization of cement hydrates. Nat Commun 5:4960ADSCrossRefGoogle Scholar
  4. Abdolhosseini Qomi MJ, Ulm F-J, Pellenq RJ-M (2015) Physical origins of thermal properties of cement paste. Phys Rev Appl 3(6):064010ADSCrossRefGoogle Scholar
  5. Abdolhosseini Qomi MJ, Ebrahimi D, Bauchy M, Pellenq R, Ulm F-J (2017) Methodology for estimation of nanoscale hardness via atomistic simulations. J Nanomech Micromech 7(4):04017011CrossRefGoogle Scholar
  6. Allen AJ, Oberthur RC, Pearson D, Schofield P, Wilding CR (1987) Development of the fine porosity and gel structure of hydrating cement systems. Philos Mag B 56(3):263–288ADSCrossRefGoogle Scholar
  7. Allen AJ, Thomas JJ, Jennings HM (2007) Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat Mater 6(4):311–316ADSCrossRefGoogle Scholar
  8. Attard P (1996) Electrolytes and the electric double layer. In: Prigogine I, Rice SA (eds) Advances in chemical physics. Wiley, New York, pp 1–159Google Scholar
  9. Ball P (2015) Material witness: concrete mixing for gorillas. Nat Mater 14(5):472–472ADSCrossRefGoogle Scholar
  10. Bauchy M (2012) Topological constraints and rigidity of network glasses from molecular dynamics simulations. Am Ceram Soc Bull 91(4):34–38AGoogle Scholar
  11. Bauchy M (2014) Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. J Chem Phys 141(2):024507ADSCrossRefGoogle Scholar
  12. Bauchy M, Micoulaut M (2011) Atomic scale foundation of temperature-dependent bonding constraints in network glasses and liquids. J Non-Cryst Solids 357(14):2530–2537ADSCrossRefGoogle Scholar
  13. Bauchy M, Micoulaut M, Celino M, Le Roux S, Boero M, Massobrio C (2011) Angular rigidity in tetrahedral network glasses with changing composition. Phys Rev B 84(5):054201ADSCrossRefGoogle Scholar
  14. Bauchy M, Abdolhosseini Qomi MJ, Bichara C, Ulm F-J, Pellenq RJ-M (2014a) Nanoscale structure of cement: viewpoint of rigidity theory. J Phys Chem C 118(23):12485–12493CrossRefGoogle Scholar
  15. Bauchy M, Abdolhosseini Qomi MJ, Pellenq RJM, Ulm FJ (2014b) Is cement a glassy material? Comput Model Concr Struct 1:169Google Scholar
  16. Bauchy M, Abdolhosseini Qomi MJ, Ulm F-J, Pellenq RJ-M (2014c) Order and disorder in calcium-silicate-hydrate. J Chem Phys 140(21):214503ADSCrossRefGoogle Scholar
  17. Bauchy M, Qomi MJA, Bichara C, Ulm F-J, Pellenq RJ-M (2015) Rigidity transition in materials: hardness is driven by weak atomic constraints. Phys Rev Lett 114(12):125502ADSCrossRefGoogle Scholar
  18. Bauchy M, Wang B, Wang M, Yu Y, Abdolhosseini Qomi MJ, Smedskjaer MM, Bichara C, Ulm F-J, Pellenq R (2016) Fracture toughness anomalies: viewpoint of topological constraint theory. Acta Mater 121:234–239CrossRefGoogle Scholar
  19. Bauchy M, Wang M, Yu Y, Wang B, Krishnan NMA, Masoero E, Ulm F-J, Pellenq R (2017) Topological control on the structural relaxation of atomic networks under stress. Phys Rev Lett 119(3):035502ADSCrossRefGoogle Scholar
  20. Bensted J, Barnes P (2002) Structure and performance of cements. Spon Press, London/New YorkGoogle Scholar
  21. Bernal JD (1954) The structures of cement hydration compounds. In: Proceedings of the 3rd international symposium on the chemistry of cement, pp 216–236Google Scholar
  22. Bonaccorsi E, Merlino S, Kampf AR (2005) The crystal structure of tobermorite 14 A (Plombierite), a C-S-H phase. J Am Ceram Soc 88(3):505–512CrossRefGoogle Scholar
  23. Bonnaud PA, Labbez C, Miura R, Suzuki A, Miyamoto N, Hatakeyama N, Miyamoto A, Vliet KJV (2016) Interaction grand potential between calcium-silicate-hydrate nanoparticles at the molecular level. Nanoscale 8(7):4160–4172ADSCrossRefGoogle Scholar
  24. Boolchand P, Georgiev DG, Goodman B (2001) Discovery of the intermediate phase in chalcogenide glasses. J Optoelectron Adv Mater 3(3):703–720Google Scholar
  25. Bullard JW, Enjolras E, George WL, Satterfield SG, Terrill JE (2010) A parallel reaction-transport model applied to cement hydration and microstructure development. Model Simul Mater Sci Eng 18(2):025007ADSCrossRefGoogle Scholar
  26. Carrier B (2013) Influence of water on the short-term and long-term mechanical properties of swelling clays: experiments on self-supporting films and molecular simulations. PhD thesis, Université Paris-EstGoogle Scholar
  27. Chien S-C, Auerbach SM, Monson PA (2015) Reactive ensemble Monte Carlo simulations of silica polymerization that yield zeolites and related crystalline microporous structures. J Phys Chem C 119(47):26628–26635CrossRefGoogle Scholar
  28. Churakov SV (2009) Structure of the interlayer in normal 11 Å tobermorite from an ab initio study. Eur J Mineral 21(1):261–271CrossRefGoogle Scholar
  29. Daimon M, Abo-El-Enein SA, Rosara G, Goto S, Kondo R (1977) Pore structure of calcium silicate hydrate in hydrated tricalcium silicate. J Am Ceram Soc 60(3–4):110–114CrossRefGoogle Scholar
  30. Dolado JS, Griebel M, Hamaekers J, Heber F (2011) The nano-branched structure of cementitious calcium-silicate-hydrate gel. J Mater Chem 21(12):4445–4449CrossRefGoogle Scholar
  31. Durgun E, Manzano H, Pellenq RJM, Grossman JC (2012) Understanding and controlling the reactivity of the calcium silicate phases from first principles. Chem Mater 24(7):1262–1267CrossRefGoogle Scholar
  32. Ebrahimi D, Pellenq RJ-M, Whittle AJ (2012) Nanoscale elastic properties of montmorillonite upon water adsorption. Langmuir 28(49):16855–16863CrossRefGoogle Scholar
  33. Ebrahimi D, Whittle AJ, Pellenq RJ-M (2014) Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets. J Chem Phys 140(15):154309ADSCrossRefGoogle Scholar
  34. Feldman RF, Sereda PJ (1968) A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Mater Constr 1(6):509–520CrossRefGoogle Scholar
  35. Fratini E, Faraone A, Radi F, Chen SH, Baglioni (2013) Hydration water dynamics in tricalcium silicate pastes by time-resolved incoherent elastic neutron scattering. J Phys Chem C 117(14):7358–7364CrossRefGoogle Scholar
  36. Fonseca PC, Jennings HM (2010) The effect of drying on early-age morphology of C-S-H as observed in environmental SEM. Cem Concr Res 40(12):1673–1680CrossRefGoogle Scholar
  37. Garrault S, Finot E, Lesniewska E, Nonat A (2005) Study of C-S-H growth on C3S surface during its early hydration. Mater Struct 38(4):435–442CrossRefGoogle Scholar
  38. Garrault S, Behr T, Nonat A (2006) Formation of the C−S−H layer during early hydration of tricalcium silicate grains with different sizes. J Phys Chem B 110(1):270–275CrossRefGoogle Scholar
  39. Gartner EM (1997) A proposed mechanism for the growth of C-S-H during the hydration of tricalcium silicate. Cem Concr Res 27(5):665–672CrossRefGoogle Scholar
  40. Gartner E (2004) Industrially interesting approaches to ‘low-CO2’ cements. Cem Concr Res 34(9):1489–1498. H F W Taylor Commemorative IssueCrossRefGoogle Scholar
  41. Gartner E, Sui T (2017) Alternative cement clinkers. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2017.02.002
  42. Gartner E, Maruyama I, Chen J (2017) A new model for the C-S-H phase formed during the hydration of Portland cements. Cem Concr Res 97:95–106CrossRefGoogle Scholar
  43. Geng G, Myers RJ, Qomi MJA, Monteiro PJM (2017) Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate. Sci Rep 7(1):10986ADSCrossRefGoogle Scholar
  44. Gmira A, Zabat M, Pellenq RJ-M, Damme HV (2004) Microscopic physical basis of the poromechanical behavior of cement-based materials. Mater Struct 37(1):3–14CrossRefGoogle Scholar
  45. Huang J, Wang B, Valenzano L, Bauchy M, Sant G (2015) Electronic origin of doping-induced enhancements of reactivity: case study of tricalcium silicate. J Phys Chem C 119:25991CrossRefGoogle Scholar
  46. Ioannidou K, Pellenq RJ-M, Gado ED (2014) Controlling local packing and growth in calcium-silicate-hydrate gels. Soft Matter 10(8):1121–1133ADSCrossRefGoogle Scholar
  47. Ioannidou K, Krakowiak KJ, Bauchy M, Hoover CG, Masoero E, Yip S, Ulm F-J, Levitz P, Pellenq RJ-M, Gado ED (2016) Mesoscale texture of cement hydrates. Proc Natl Acad Sci 113(8):2029–2034ADSCrossRefGoogle Scholar
  48. Israelachvili JN (2011) Intermolecular and surface forces, Revised 3rd edn. Academic, Cambridge, MAGoogle Scholar
  49. Jennings HM (2000) A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res 30(1):101–116CrossRefGoogle Scholar
  50. Jönsson B, Wennerström H, Nonat A, Cabane B (2004) Onset of cohesion in cement paste. Langmuir 20(16):6702–6709CrossRefGoogle Scholar
  51. Jönsson B, Nonat A, Labbez C, Cabane B, Wennerström H (2005) Controlling the cohesion of cement paste. Langmuir 21(20):9211–9221CrossRefGoogle Scholar
  52. Korb J-P, McDonald PJ, Monteilhet L, Kalinichev AG, Kirkpatrick RJ (2007a) Comparison of proton field-cycling relaxometry and molecular dynamics simulations for proton-water surface dynamics in cement-based materials. Cem Concr Res 37(3):348–350CrossRefGoogle Scholar
  53. Korb J-P, Monteilhet L, McDonald PJ, Mitchell J (2007b) Microstructure and texture of hydrated cement-based materials: a proton field cycling relaxometry approach. Cem Concr Res 37(3):295–302CrossRefGoogle Scholar
  54. Krishnan NMA, Wang B, Falzone G, Le Pape Y, Neithalath N, Pilon L, Bauchy M, Sant G (2016) Confined water in layered silicates: the origin of anomalous thermal expansion behavior in calcium-silicate-hydrates. ACS Appl Mater Interfaces 8(51):35621–35627CrossRefGoogle Scholar
  55. Krishnan NMA, Wang B, Sant G, Phillips JC, Bauchy M (2017) Revealing the effect of irradiation on cement hydrates: evidence of a topological self-organization. ACS Appl Mater Interfaces 9(37):32377–32385CrossRefGoogle Scholar
  56. Manzano H, Durgun E, Abdolhosseine Qomi MJ, Ulm F-J, Pellenq RJ, Grossman JC (2011) Impact of chemical impurities on the crystalline cement clinker phases determined by atomistic simulations. Cryst Growth Des 11(7):2964–2972CrossRefGoogle Scholar
  57. Manzano H, Masoero E, Lopez-Arbeloa I, Jennings HM (2013) Shear deformations in calcium silicate hydrates. Soft Matter 9(30):7333–7341ADSCrossRefGoogle Scholar
  58. Manzano H, Durgun E, López-Arbeloa I, Grossman JC (2015) Insight on tricalcium silicate hydration and dissolution mechanism from molecular simulations. ACS Appl Mater Interfaces 7(27):14726–14733CrossRefGoogle Scholar
  59. Masoumi S, Valipour H, Abdolhosseini Qomi MJ (2017a) Intermolecular forces between nanolayers of crystalline calcium-silicate-hydrates in aqueous medium. J Phys Chem C 121(10):5565–5572CrossRefGoogle Scholar
  60. Masoumi S, Valipour H, Abdolhosseini Qomi MJ (2017b) Interparticle interactions in colloidal systems: towards a comprehensive mesoscale model. ACS Appl Mater Interfaces 9(32):27338–27349CrossRefGoogle Scholar
  61. Mauro JC (2011) Topological constraint theory of glass. Am Ceram Soc Bull 90(4):31–37Google Scholar
  62. Mauro JC, Ellison AJ, Pye LD (2013) Glass: the nanotechnology connection. Int J Appl Glas Sci 4(2):64–75CrossRefGoogle Scholar
  63. McDonald PJ, Rodin V, Valori A (2010) Characterisation of intra- and inter-C-S-H gel pore water in white cement based on an analysis of NMR signal amplitudes as a function of water content. Cem Concr Res 40(12):1656–1663CrossRefGoogle Scholar
  64. Meral C, Benmore CJ, Monteiro PJM (2011) The study of disorder and nanocrystallinity in C-S-H, supplementary cementitious materials and geopolymers using pair distribution function analysis. Cem Concr Res 41(7):696–710CrossRefGoogle Scholar
  65. Morshedifard A, Masoumi S, Qomi MJA (2018) Nanoscale origins of creep in calcium silicate hydrates. Nat Commun 9(1):1785ADSCrossRefGoogle Scholar
  66. Muller ACA, Scrivener KL, Gajewicz AM, McDonald PJ (2013a) Densification of C-S-H measured by 1H NMR relaxometry. J Phys Chem C 117(1):403–412CrossRefGoogle Scholar
  67. Muller ACA, Scrivener KL, Gajewicz AM, McDonald PJ (2013b) Use of bench-top NMR to measure the density, composition and desorption isotherm of C-S-H in cement paste. Microporous Mesoporous Mater 178:99–103CrossRefGoogle Scholar
  68. Neubauer CM, Jennings HM (1996) The role of the environmental scanning electron microscope in the investigation of cement-based materials. Scanning 18(7):515–521CrossRefGoogle Scholar
  69. Nonat A (2004) The structure and stoichiometry of C-S-H. Cem Concr Res 34(9):1521–1528. H. F. W. Taylor Commemorative IssueCrossRefGoogle Scholar
  70. Pellenq RJ-M, Van Damme H (2004) Why does concrete set?: the nature of cohesion forces in hardened cement-based materials. MRS Bull 29(05):319–323CrossRefGoogle Scholar
  71. Pellenq RJ-M, Caillol JM, Delville A (1997) Electrostatic attraction between two charged surfaces: a (N,V,T) Monte Carlo simulation. J Phys Chem B 101(42):8584–8594CrossRefGoogle Scholar
  72. Pellenq RJ-M, Lequeux N, van Damme H (2008) Engineering the bonding scheme in C-S-H: the iono-covalent framework. Cem Concr Res 38(2):159–174. Special issue – The 12th International Congress on the Chemistry of Cement. Montreal, Canada, July 8–13 2007CrossRefGoogle Scholar
  73. Pellenq RJ-M, Kushima A, Shahsavari R, Vliet KJV, Buehler MJ, Yip S, Ulm F-J (2009) A realistic molecular model of cement hydrates. Proc Natl Acad Sci 106(38):16102–16107ADSCrossRefGoogle Scholar
  74. Phillips JC (1979) Topology of covalent non-crystalline solids. 1. Short-range order in chalcogenide alloys. J Non-Cryst Solids 34(2):153–181ADSCrossRefGoogle Scholar
  75. Pignatelli I, Kumar A, Alizadeh R, Pape YL, Bauchy M, Sant G (2016) A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments. J Chem Phys 145(5):054701ADSCrossRefGoogle Scholar
  76. Plassard C, Lesniewska E, Pochard I, Nonat A (2005) Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. Langmuir 21(16):7263–7270CrossRefGoogle Scholar
  77. Pochard I, Labbez C, Nonat A, Vija H, Jönsson B (2010) The effect of polycations on early cement paste. Cem Concr Res 40(10):1488–1494CrossRefGoogle Scholar
  78. Popescu CD, Muntean M, Sharp JH (2003) Industrial trial production of low energy belite cement. Cem Concr Compos 25(7):689–693CrossRefGoogle Scholar
  79. Pustovgar E, Sangodkar RP, Andreev AS, Palacios M, Chmelka BF, Flatt RJ, d’Espinose de Lacaillerie J-B (2016) Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates. Nat Commun 7:10952ADSCrossRefGoogle Scholar
  80. Qomi MJA, Bauchy M, Ulm F-J, Pellenq R (2015) Polymorphism and its implications on structure-property correlation in calcium-silicate-hydrates. In: Sobolev K, Shah SP (eds) Nanotechnology in construction. Springer International Publishing, Cham, pp 99–108CrossRefGoogle Scholar
  81. Quillin K (2001) Performance of belite-sulfoaluminate cements. Cem Concr Res 31(9):1341–1349CrossRefGoogle Scholar
  82. Rahimi-Aghdam S, Bažant ZP, Abdolhosseini Qomi MJ (2017) Cement hydration from hours to centuries controlled by diffusion through barrier shells of C-S-H. J Mech Phys Solids 99:211–224ADSCrossRefGoogle Scholar
  83. Richardson IG (2000) The nature of the hydration products in hardened cement pastes. Cem Concr Compos 22(2):97–113CrossRefGoogle Scholar
  84. Richardson IG (2004) Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem Concr Res 34(9):1733–1777CrossRefGoogle Scholar
  85. Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38(2):137–158CrossRefGoogle Scholar
  86. Santos RL, Horta RB, Pereira J, Nunes TG, Rocha P, Canongia Lopes JN, Colaço R (2015) Microstructural control and hydration of novel micro-dendritic clinkers with CaO/SiO2=1.4. Cem Concr Res 76:212–221CrossRefGoogle Scholar
  87. Scrivener KL, Juilland P, Monteiro PJM (2015) Advances in understanding hydration of Portland cement. Cem Concr Res 78:38–56. Keynote papers from 14th International Congress on the Chemistry of Cement (ICCC 2015)CrossRefGoogle Scholar
  88. Shahsavari R, Pellenq RJ-M, Ulm F-J (2011) Empirical force fields for complex hydrated calcio-silicate layered materials. Phys Chem Chem Phys: PCCP 13(3):1002–1011CrossRefGoogle Scholar
  89. Skinner LB, Chae SR, Benmore CJ, Wenk HR, Monteiro PJM (2010) Nanostructure of calcium silicate hydrates in cements. Phys Rev Lett 104(19):195502ADSCrossRefGoogle Scholar
  90. Smedskjaer MM, Mauro JC, Yue Y (2010) Prediction of glass hardness using temperature-dependent constraint theory. Phys Rev Lett 105(11):115503ADSCrossRefGoogle Scholar
  91. Soyer-Uzun S, Chae SR, Benmore CJ, Wenk H-R, Monteiro PJM (2012) Compositional evolution of calcium silicate hydrate (C-S-H) structures by Total X-ray scattering. J Am Ceram Soc 95(2):793–798CrossRefGoogle Scholar
  92. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1):141–151ADSCrossRefGoogle Scholar
  93. Taylor HFW (1993) Nanostructure of C-S-H: current status. Adv Cem Based Mater 1(1):38–46CrossRefGoogle Scholar
  94. Taylor HFW (1997) Cement chemistry. T. Telford, LondonCrossRefGoogle Scholar
  95. Thomas JJ, Jennings HM (2006) A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste. Cem Concr Res 36(1):30–38CrossRefGoogle Scholar
  96. Thomas JJ, Biernacki JJ, Bullard JW, Bishnoi S, Dolado JS, Scherer GW, Luttge A (2011) Modeling and simulation of cement hydration kinetics and microstructure development. Cem Concr Res 41(12):1257–1278. Conferences Special: Cement Hydration Kinetics and Modeling, Quebec City, 2009 & CONMOD10, Lausanne, 2010CrossRefGoogle Scholar
  97. Varshneya AK, Mauro DJ (2007) Microhardness, indentation toughness, elasticity, plasticity, and brittleness of Ge-Sb-Se chalcogenide glasses. J Non-Cryst Solids 353(13–15):1291–1297ADSCrossRefGoogle Scholar
  98. Zheng Q, Yue Y, Mauro JC (2017) Density of topological constraints as a metric for predicting glass hardness. Appl Phys Lett 111(1):011907ADSCrossRefGoogle Scholar
  99. Zhou Y, Morshedifard A, Lee J, Abdolhosseini Qomi MJ (2017) The contribution of propagons and diffusons in heat transport through calcium-silicate-hydrates. Appl Phys Lett 110(4):043104ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mohammad Javad Abdolhosseini Qomi
    • 1
  • Mathieu Bauchy
    • 2
  • Roland J. -M. Pellenq
    • 3
    • 4
    • 5
  1. 1.Advanced Infrastructure Materials for Sustainability Laboratory (AIMS Lab), Department of Civil and Environmental EngineeringHenry Samueli School of Engineering, E4130 Engineering Gateway, University of California, IrvineIrvineUSA
  2. 2.Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental EngineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.MSE2, the MIT/CNRS/Aix-Marseille University Joint LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.Centre Interdisciplinaire des Nanosciences de MarseilleCNRS and Aix-Marseille UniversityMarseilleFrance

Section editors and affiliations

  • Emanuela Del Gado
    • 1
  • Roland Jm Pellenq
  1. 1.Department of Physics and I(SM)2Georgetown UniversityMarylandUSA

Personalised recommendations