Advertisement

Magnetic Impurities on Surfaces: Kondo and Inelastic Scattering

  • Deung-Jang Choi
  • Nicolás Lorente
Living reference work entry

Abstract

The scanning tunneling microscope is a unique tool for injecting electrons with great energy and spatial resolution. These electrons can interact with local magnetic moments and reveal the rich phenomena associated with spin-flip dynamics. This chapter is a review of these interesting effects with emphasis on physical concepts and recent results. The Kondo effect is of paramount importance in condensed matter physics. When Kondo correlations and systems of spins of increasing complexity are used, new phenomena appear such as heavy-fermion phases as recently revealed by quasiparticle-interference experiments. New developments showing the relationship between atomic spin entanglement and appearance of Kondo correlations are reviewed. Non-equilibrium Kondo brings in its own features although in the tunneling regime, the Kondo effect is largely accounted for its equilibrium properties. Kondo peaks, inelastic electron tunneling spectroscopy, electron paramagnetic resonance of single atoms, molecules, and atomic objects are explored.

Notes

Acknowledgements

Financial support from MINECO (Grant No. MAT2015-66888-C3-2-R) and FEDER funds is gratefully acknowledged.

References

  1. Agraït N, Rodrigo JG, Vieira S (1993) Conductance steps and quantization in atomic-size contacts. Phys Rev B 47(18):12345.  https://doi.org/10.1103/PhysRevB.47.12345
  2. Alducin M, Sánchez-Portal D, Arnau A, Lorente N (2010) Mixed-valency signature in vibrational inelastic electron tunneling spectroscopy. Phys Rev Lett 104:136101. https://link.aps.org/doi/10.1103/PhysRevLett.104.136101
  3. Anderson PW (1961) Localized magnetic states in metals. Phys Rev 124:41–53. https://link.aps.org/doi/10.1103/PhysRev.124.41
  4. Balatsky AV, Nishijima M, Manassen Y (2012) Electron spin resonance-scanning tunneling microscopy. Adv Phys 61(2):117–152. https://doi.org/10.1080/00018732.2012.668775
  5. Baruselli PP, Requist R, Smogunov A, Fabrizio M, Tosatti E (2015) Co adatoms on cu surfaces: ballistic conductance and Kondo temperature. Phys Rev B 92:045119. http://link.aps.org/doi/10.1103/PhysRevB.92.045119
  6. Baumann S, Paul W, Choi T, Lutz CP, Ardavan A, Heinrich AJ (2015) Electron paramagnetic resonance of individual atoms on a surface. Science 350(6259):417–420.  https://doi.org/10.1126/science.aac8703. http://science.sciencemag.org/content/350/6259/417
  7. Bork J, hui Zhang Y, Diekhöner L, Borda L, Simon P, Kroha J, Wahl P, Kern K (2011) A tunable two-impurity Kondo system in an atomic point contact. Nat Phys 7:901–906Google Scholar
  8. Bulla R, Costi TA, Pruschke T (2008) Numerical renormalization group method for quantum impurity systems. Rev Mod Phys 80:395–450. https://link.aps.org/doi/10.1103/RevModPhys.80.395
  9. Calvo MR, Fernandez-Rossier J, Palacios JJ, Jacob D, Natelson D, Untiedt C (2009) The Kondo effect in ferromagnetic atomic contacts. Nature 458(7242):1150–1153.  https://doi.org/10.1038/nature07878
  10. Choi DJ, Rastei MV, Simon P, Limot L (2012) Conductance-driven change of the Kondo effect in a single cobalt atom. Phys Rev Lett 108:266803. https://link.aps.org/doi/10.1103/PhysRevLett.108.266803
  11. Choi DJ, Guissart S, Ormaza M, Bachellier N, Bengone O, Simon P, Limot L (2016a) Kondo resonance of a co atom exchange coupled to a ferromagnetic tip. Nano Lett 16:6298.  https://doi.org/10.1021/acs.nanolett.6b02617
  12. Choi DJ, Robles R, Gauyacq JP, Ternes M, Loth S, Lorente N (2016b) Structural and magnetic properties of femnx chains (x = 1˘6) supported on cu2N∕Cu (100). Phys Rev B 94:085406. https://link.aps.org/doi/10.1103/PhysRevB.94.085406
  13. Choi DJ, Abufager P, Limot L, Lorente N (2017a) From tunneling to contact in a magnetic atom: the non-equilibrium Kondo effect. J Chem Phys 146(9):092309. https://doi.org/10.1063/1.4972874
  14. Choi DJ, Robles R, Yan S, Burgess JAJ, Rolf-Pissarczyk S, Gauyacq JP, Lorente N, Ternes M, Loth S (2017b) Building complex Kondo impurities by manipulating entangled spin chains. Nano Lett 17(10):6203–6209.  https://doi.org/10.1021/acs.nanolett.7b02882, pMID:28872317
  15. Cronenwett SM, Oosterkamp TH, Kouwenhoven LP (1998) A tunable Kondo effect in quantum dots. Science 281(5376):540–544. http://www.sciencemag.org/cgi/content/abstract/281/5376/540
  16. Delgado F, Fernández-Rossier J (2017) Spin decoherence of magnetic atoms on surfaces. Prog Surf Sci 92(1):40–82. https://doi.org/10.1016/j.progsurf.2016.12.001, http://www.sciencedirect.com/science/article/pii/S0079681616300351
  17. Delgado F, Palacios JJ, Fernández-Rossier J (2010) Spin-transfer torque on a single magnetic adatom. Phys Rev Lett 104:026601. https://link.aps.org/doi/10.1103/PhysRevLett.104.026601
  18. DiLullo A, Chang SH, Baadji N, Clark K, Klckner JP, Prosenc MH, Sanvito S, Wiesendanger R, Hoffmann G, Hla SW (2012) Molecular Kondo chain. Nano Lett 12(6):3174–3179. https://doi.org/10.1021/nl301149d
  19. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878. https://link.aps.org/doi/10.1103/PhysRev.124.1866
  20. Fernández J, Moro-Lagares M, Serrate D, Aligia AA (2016) Manipulation of the surface density of states of ag(111) by means of resonators: experiment and theory. Phys Rev B 94:075408. https://link.aps.org/doi/10.1103/PhysRevB.94.075408
  21. Frank S, Jacob D (2015) Orbital signatures of Fano-Kondo line shapes in STM adatom spectroscopy. Phys Rev B 92:235127. http://link.aps.org/doi/10.1103/PhysRevB.92.235127
  22. Fulde P (1995) Electron correlations in molecules and solids. Springer, BerlinCrossRefGoogle Scholar
  23. Gai Z, He Y, Yu H, Yang WS (1996) Observation of conductance quantization of ballistic metallic point contacts at room temperature. Phys Rev B 53(3):1042.  https://doi.org/10.1103/PhysRevB.53.1042
  24. Gaudenzi R, de Bruijckere J, Reta D, Moreira IdPR, Rovira C, Veciana J, van der Zant HSJ, Burzur E (2017) Redox-induced gating of the exchange interactions in a single organic diradical. ACS Nano 11(6):5879–5883.  https://doi.org/10.1021/acsnano.7b01578, pMID:28494146
  25. Gauyacq JP, Lorente N, Novaes FD (2012) Excitation of local magnetic moments by tunneling electrons. Prog Surf Sci 87(5–8):63–107. https://doi.org/10.1016/j.progsurf.2012.05.003, http://linkinghub.elsevier.com/retrieve/pii/S0079681612000068
  26. Girovsky J, Nowakowski J, Ali ME, Baljozovic M, Rossmann HR, Nijs T, Aeby EA, Nowakowska S, Siewert D, Srivastava G, Wäckerlin C, Dreiser J, Decurtins S, Liu SX, Oppeneer PM, Jung TA, Ballav N (2017) Long-range ferrimagnetic order in a two-dimensional supramolecular Kondo lattice. Nat Commun 8:15388.  https://doi.org/10.1038/ncomms15388
  27. Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U, Kastner MA (1998) Kondo effect in a single-electron transistor. Nature 391(6663):156–159. https://doi.org/10.1038/34373
  28. Heinrich AJ, Gupta JA, Lutz CP, Eigler DM (2004) Single-atom spin-flip spectroscopy. Science 306(5695):466–469.  https://doi.org/10.1126/science.1101077, http://science.sciencemag.org/content/306/5695/466
  29. Hettler MH, Kroha J, Hershfield S (1998) Nonequilibrium dynamics of the anderson impurity model. Phys Rev B 58:5649–5664. http://link.aps.org/doi/10.1103/PhysRevB.58.5649
  30. Hewson A (1993) The Kondo problem to heavy fermions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Hipps KW, Mazur U (2006) Inelastic electron tunneling spectroscopy. https://onlinelibrary.wiley.com/doi/abs/10.1002/0470027320.s0605
  32. Hirjibehedin CF, Lutz CP, Heinrich AJ (2006) Spin coupling in engineered atomic structures. Science 312(5776):1021–1024ADSCrossRefGoogle Scholar
  33. Hirjibehedin CF, Lin CY, Otte AF, Ternes M, Lutz CP, Jones BA, Heinrich AJ (2007) Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317(5842):1199–1203.  https://doi.org/10.1126/science.1146110, http://www.sciencemag.org/cgi/doi/10.1126/science.1146110
  34. Ho W (2002) Single-molecule chemistry. J Chem Phys 117(24):11033–11061. https://doi.org/10.1063/1.1521153
  35. Hurley A, Baadji N, Sanvito S (2011a) Perturbative approach to the Kondo effect in magnetic atoms on nonmagnetic substrates. Phys Rev B 84:115435. https://link.aps.org/doi/10.1103/PhysRevB.84.115435
  36. Hurley A, Baadji N, Sanvito S (2011b) Spin-flip inelastic electron tunneling spectroscopy in atomic chains. Phys Rev B 84:035427. https://link.aps.org/doi/10.1103/PhysRevB.84.035427
  37. Jacob D (2015) Towards a full ab initio theory of strong electronic correlations in nanoscale devices. J Phys Condens Matter 27(24):245606. https://stacks.iop.org/0953-8984/27/i=24/a=245606
  38. Jensen H, Kröger J, Néel N, Berndt R (2007) Silver oligomer and single fullerene electronic properties revealed by a scanning tunnelling microscope. Eur Phys J D 45(3):465–469.  https://doi.org/10.1140/epjd/e2007-00157-x
  39. Jiang Y, Zhang YN, Cao JX, Wu RQ, Ho W (2011) Real-space imaging of Kondo screening in a two-dimensional o2 lattice. Science 333(6040):324–328.  https://doi.org/10.1126/science.1205785, http://science.sciencemag.org/content/333/6040/324,
  40. Kim H, Yoshida Y, Lee CC, Chang TR, Jeng HT, Lin H, Haga Y, Fisk Z, Hasegawa Y (2017) Atomic-scale visualization of surface-assisted orbital order. Sci Adv 3(9).  https://doi.org/10.1126/sciadv.aao0362, http://advances.sciencemag.org/content/3/9/eaao0362
  41. Komeda T (2005) Chemical identification and manipulation of molecules by vibrational excitation via inelastic tunneling process with scanning tunneling microscopy. Prog Surf Sci 78(2):41–85. https://doi.org/10.1016/j.progsurf.2005.05.001, http://www.sciencedirect.com/science/article/pii/S0079681605000262
  42. Komeda T, Manassen Y (2008) Distribution of frequencies of a single precessing spin detected by scanning tunneling microscope. Appl Phys Lett 92(21):212506. https://doi.org/10.1063/1.2937940
  43. Komeda T, Isshiki H, Liu J, Zhang YF, Lorente N, Katoh K, Breedlove BK, Yamashita M (2011) Observation and electric current control of a local spin in a single-molecule magnet. Nat Commun 2:217.  https://doi.org/10.1038/ncomms1210, article
  44. Kondo J (1964) Resistance minimum in dilute magnetic alloys. Prog Theoret Phys 32(1):37–49. http://ptp.ipap.jp/link?PTP/32/37/
  45. Kondo J (2005) Sticking to my bush. J Phys Soc Japan 74(1):1–3.  https://doi.org/10.1143/JPSJ.74.1
  46. Korytár R, Lorente N (2011) Multi-orbital non-crossing approximation from maximally localized Wannier functions: the Kondo signature of copper phthalocyanine on Ag(100). J Phys Condens Matter 23(35):355009. http://stacks.iop.org/0953-8984/23/i=35/a=355009
  47. Kramers H (1930) Theorie generale de la rotation paramagnetique dans les cristaux. Proceedings Koninklijke Akademie van Wetenschappen 33:959–972zbMATHGoogle Scholar
  48. Kröger J (2008) Nonadiabatic effects on surfaces: Kohn anomaly, electronic damping of adsorbate vibrations, and local heating of single molecules. J Phys Condens Matter 20(22):224015. https://doi.org/10.1088/0953-8984/20/22/224015
  49. Kröger J, Jensen H, Berndt R (2007) Conductance of tip-surface and tip-atom junction on Au(111) explored by a scanning tunnelling microscope. New J Phys 9(5):153. https://doi.org/10.1088/1367-2630/9/5/153
  50. Lado JL, Ferrón A, Fernández-Rossier J (2017) Exchange mechanism for electron paramagnetic resonance of individual adatoms. Phys Rev B 96:205420. https://link.aps.org/doi/10.1103/PhysRevB.96.205420
  51. Li J, Schneider WD, Berndt R, Delley B (1998) Kondo scattering observed at a single magnetic impurity. Phys Rev Lett 80:2893–2896. https://link.aps.org/doi/10.1103/PhysRevLett.80.2893
  52. Limot L, Kröger J, Berndt R, Garcia-Lekue A, Hofer WA (2005) Atom transfer and single-adatom contacts. Phys Rev Lett 94(12):126102.  https://doi.org/10.1103/PhysRevLett.94.126102
  53. Lorente N, Gauyacq JP (2009) Efficient spin transitions in inelastic electron tunneling spectroscopy. Phys Rev Lett 103:176601. https://link.aps.org/doi/10.1103/PhysRevLett.103.176601
  54. Loth S, Baumann S, Lutz CP, Eigler DM, Heinrich AJ (2012) Bistability in atomic-scale antiferromagnets. Science 335:196–199ADSCrossRefGoogle Scholar
  55. Madhavan V, Chen W, Jamneala T, Crommie MF, Wingreen NS (1998) Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280(5363):567–569. http://www.sciencemag.org/cgi/content/abstract/280/5363/567
  56. Madhavan V, Chen W, Jamneala T, Crommie MF, Wingreen NS (2001) Local spectroscopy of a Kondo impurity: Co on Au(111). Phys Rev B 64(16):165412.  https://doi.org/10.1103/PhysRevB.64.165412
  57. Manassen Y, Hamers RJ, Demuth JE, Castellano Jr AJ (1989) Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces. Phys Rev Lett 62:2531–2534. https://link.aps.org/doi/10.1103/PhysRevLett.62.2531
  58. Meissner W, Voigt B (1930) Messungen mit hilfe von flüssigem helium xi widerstand der reinen metalle in tiefen temperaturen. Annalen der Physik 7:761–798ADSCrossRefGoogle Scholar
  59. Merino J, Gunnarsson O (2004) Simple model for scanning tunneling spectroscopy of noble metal surfaces with adsorbed Kondo impurities. Phys Rev B 69:115404. https://link.aps.org/doi/10.1103/PhysRevB.69.115404
  60. Morgenstern K, Lorente N, Rieder KH (2013) Controlled manipulation of single atoms and small molecules using the scanning tunnelling microscope. Physica Status Solidi (b) 250(9):1671–1751.  https://doi.org/10.1002/pssb.201370558
  61. Morr DK (2017) Theory of scanning tunneling spectroscopy: from Kondo impurities to heavy fermion materials. Rep Prog Phys 80(1):014502. http://stacks.iop.org/0034-4885/80/i=1/a=014502
  62. Mugarza A, Lorente N, Ordejón P, Krull C, Stepanow S, Bocquet ML, Fraxedas J, Ceballos G, Gambardella P (2010) Orbital specific chirality and homochiral self-assembly of achiral molecules induced by charge transfer and spontaneous symmetry breaking. Phys Rev Lett 105:115702. https://link.aps.org/doi/10.1103/PhysRevLett.105.115702
  63. Mugarza A, Robles R, Krull C, Korytár R, Lorente N, Gambardella P (2012) Electronic and magnetic properties of molecule-metal interfaces: transition-metal phthalocyanines adsorbed on Ag(100). Phys Rev B 85:155437. https://link.aps.org/doi/10.1103/PhysRevB.85.155437
  64. Müllegger S, Tebi S, Das AK, Schöfberger W, Faschinger F, Koch R (2014) Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance. Phys Rev Lett 113:133001. https://link.aps.org/doi/10.1103/PhysRevLett.113.133001
  65. Nagaoka K, Jamneala T, Grobis M, Crommie MF (2002) Temperature dependence of a single Kondo impurity. Phys Rev Lett 88:077205. https://link.aps.org/doi/10.1103/PhysRevLett.88.077205
  66. Néel N, Kröger J, Limot L, Berndt R (2007a) Conductance of single atoms and molecules studied with a scanning tunnelling microscope. Nanotechnology 18(4):044027. https://doi.org/10.1088/0957-4484/18/4/044027
  67. Néel N, Kröger J, Limot L, Frederiksen T, Brandbyge M, Berndt R (2007b) Controlled contact to a C60 molecule. Phys Rev Lett 98(6):065502.  https://doi.org/10.1103/PhysRevLett.98.065502
  68. Néel N, Kröger J, Limot L, Palotas K, Hofer WA, Berndt R (2007c) Conductance and Kondo effect in a controlled single-atom contact. Phys Rev Lett 98(1):016801.  https://doi.org/10.1103/PhysRevLett.98.016801
  69. Néel N, Kröger J, Limot L, Berndt R (2008a) Conductance of oriented C60 molecules. Nano Lett 8(5):1291. https://doi.org/10.1021/nl073074i
  70. Néel N, Limot L, Kröger J, Berndt R (2008b) Rotation of C60 in a single-molecule contact. Phys Rev B 77(12):125431.  https://doi.org/10.1103/PhysRevB.77.125431
  71. Néel N, Berndt R, Kröger J, Wehling TO, Lichtenstein AI, Katsnelson MI (2011) Two-site Kondo effect in atomic chains. Phys Rev Lett 107(10):106804.  https://doi.org/10.1103/PhysRevLett.107.106804
  72. Novaes FD, Lorente N, Gauyacq JP (2010) Quenching of magnetic excitations in single adsorbates at surfaces: Mn on cun/cu(100). Phys Rev B 82:155401. https://link.aps.org/doi/10.1103/PhysRevB.82.155401
  73. Olesen L, Lægsgaard E, Stensgaard I, Besenbacher F, Schiøtz J, Stoltze P, Jacobsen KW, Nørskov JK (1994) Quantized conductance in an atom-sized point contact. Phys Rev Lett 72(14):2251.  https://doi.org/10.1103/PhysRevLett.72.2251
  74. Ormaza M, Bachellier N, Faraggi MN, Verlhac B, Abufager P, Ohresser P, Joly L, Romeo M, Scheurer F, Bocquet ML, Lorente N, Limot L (2017) Efficient spin-flip excitation of a nickelocene molecule. Nano Lett 17(3):1877–1882.  https://doi.org/10.1021/acs.nanolett.6b05204, pMID:28199115
  75. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abrun̆a HD, McEuen PL, Ralph DC (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417:722–725.  https://doi.org/10.1038/nature00791
  76. Parks JJ, Champagne AR, Hutchison GR, Flores-Torres S, Abruña HD, Ralph DC (2007) Tuning the Kondo effect with a mechanically controllable break junction. Phys Rev Lett 99:026601. https://link.aps.org/doi/10.1103/PhysRevLett.99.026601
  77. Parks JJ, Champagne AR, Costi TA, Shum WW, Pasupathy AN, Neuscamman E, Flores-Torres S, Cornaglia PS, Aligia AA, Balseiro CA, Chan GKL, Abrun̆a HD, Ralph DC (2010) Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328(5984):1370.  https://doi.org/10.1126/science.1186874
  78. Pascual JI, Méndez J, Gómez-Herrero J, Baró AM, García N, Binh VT (1993) Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys Rev Lett 71(12):1852.  https://doi.org/10.1103/PhysRevLett.71.1852
  79. Persson M (2009) Theory of inelastic electron tunneling from a localized spin in the impulsive approximation. Phys Rev Lett 103:050801. https://link.aps.org/doi/10.1103/PhysRevLett.103.050801
  80. Pla JJ, Tan KJ, Dehollain Jp, Lim WH, Morton JJL, Jamieson DN, Dzurak AS, Morello A (2012) A single-atom electron spin qubit in silicon. Nature 489:541–545ADSCrossRefGoogle Scholar
  81. Plihal M, Gadzuk JW (2001) Nonequilibrium theory of scanning tunneling spectroscopy via adsorbate resonances: nonmagnetic and Kondo impurities. Phys Rev B 63:085404. https://link.aps.org/doi/10.1103/PhysRevB.63.085404
  82. Pustilnik M, Glazman LI (2001) Kondo effect in real quantum dots. Phys Rev Lett 87:216601. https://link.aps.org/doi/10.1103/PhysRevLett.87.216601
  83. Robles R, Lorente N, Isshiki H, Liu J, Katoh K, Breedlove BK, Yamashita M, Komeda T (2012) Spin doping of individual molecules by using single-atom manipulation. Nano Lett 12(7):3609–3612. https://doi.org/10.1021/nl301301e, pMID:22642450
  84. Sarachik MP, Corenzwit E, Longinotti LD (1964) Resistivity of mo-nb and mo-re alloys containing 1% fe. Phys Rev 135:A1041–A1045. https://link.aps.org/doi/10.1103/PhysRev.135.A1041
  85. Schrieffer JR, Wolff PA (1966) Relation between the anderson and kondo hamiltonians. Phys Rev 149:491–492. https://link.aps.org/doi/10.1103/PhysRev.149.491
  86. Spinelli A, Bryant B, Delgado F, Fernández-Rossier J, Otte AF (2014) Imaging of spin waves in atomically designed nanomagnets. Nat Mater 13(8):782–785.  https://doi.org/10.1038/nmat4018
  87. Ternes M (2015) Spin excitations and correlations in scanning tunneling spectroscopy. New J Phys 17(6):063016. http://stacks.iop.org/1367-2630/17/i=6/a=063016
  88. Ternes M (2017) Probing magnetic excitations and correlations in single and coupled spin systems with scanning tunneling spectroscopy. Prog Surf Sci 92(1):83–115. https://doi.org/10.1016/j.progsurf.2017.01.001, http://www.sciencedirect.com/science/article/pii/S0079681617300011
  89. Ternes M, Heinrich AJ, Schneider WD (2009) Spectroscopic manifestations of the Kondo effect on single adatoms. J Phys Condens Matt 21(5):053001. http://iopscience.iop.org/0953-8984/21/5/053001
  90. Tersoff J, Hamann DR (1985) Theory of the scanning tunneling microscope. Phys Rev B 31:805–813. https://link.aps.org/doi/10.1103/PhysRevB.31.805
  91. Toskovic R, van den Berg R, Spinelli A, Eliens IS, van den Toorn B, Bryant B, Caux JS, Otte AF (2016) Atomic spin-chain realization of a model for quantum criticality. Nat Phys 6(3):187–191.  https://doi.org/10.1038/nphys3722
  92. Tsukahara N, Shiraki S, Itou S, Ohta N, Takagi N, Kawai M (2011) Evolution of kondo resonance from a single impurity molecule to the two-dimensional lattice. Phys Rev Lett 106:187201. https://link.aps.org/doi/10.1103/PhysRevLett.106.187201
  93. van Sciver SW (2012) Helium cryogenics. Springer, New YorkCrossRefGoogle Scholar
  94. Varma CM, Yafet Y (1976) Magnetic susceptibility of mixed-valence rare-earth compounds. Phys Rev B 13:2950–2954. https://link.aps.org/doi/10.1103/PhysRevB.13.2950
  95. Vitali L, Ohmann R, Stepanow S, Gambardella P, Tao K, Huang R, Stepanyuk VS, Bruno P, Kern K (2008) Kondo effect in single atom contacts: the importance of the atomic geometry. Phys Rev Lett 101(21):216802.  https://doi.org/10.1103/PhysRevLett.101.216802
  96. Wahl P, Simon P, Diekhöner L, Stepanyuk VS, Bruno P, Schneider MA, Kern K (2007) Exchange interaction between single magnetic adatoms. Phys Rev Lett 98(5):056601. http://link.aps.org/abstract/PRL/v98/e056601
  97. Yanson IK, Fisun VV, Hesper R, Khotkevich AV, Krans JM, Mydosh JA, van Ruitenbeek JM (1995) Size dependence of Kondo scattering in point contacts. Phys Rev Lett 74:302–305. https://link.aps.org/doi/10.1103/PhysRevLett.74.302
  98. Yosida K (1966) Bound state due to the s − d exchange interaction. Phys Rev 147:223–227. https://link.aps.org/doi/10.1103/PhysRev.147.223
  99. Zener C (1951) Interaction between the d shells in the transition metals. Phys Rev 81:440–444. https://link.aps.org/doi/10.1103/PhysRev.81.440

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Deung-Jang Choi
    • 1
    • 2
  • Nicolás Lorente
    • 1
    • 2
  1. 1.Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU)Donostia-San SebastianSpain
  2. 2.Donostia International Physics Center (DIPC)Donostia-San SebastianSpain

Section editors and affiliations

  • Stefano Sanvito
    • 1
  1. 1.Department of PhysicsTrinity CollegeDublinIreland

Personalised recommendations