Skip to main content

A Decade of Computational Surface Catalysis

  • Living reference work entry
  • First Online:

Abstract

We briefly survey recent developments in surface catalysis modeling. The differentiated view on required level of accuracy established in the wake of multi-scale modeling approaches led to the emergence of high-throughput computational screening approaches. The large amounts of data created this way are now increasingly mined with machine learning techniques. We discuss status and challenges in this exciting mix of methodologies that describe catalytic systems from the electrons to the reactor. Next to the traditional focus on understanding and predicting catalytic activity, we argue that approaches to dynamical catalyst restructuring, to concomitant heat management, and to catalyst lifetime are important themes for the decade to come.

This is a preview of subscription content, log in via an institution.

References

  • Andersen M, Medford AJ, Nørskov JK, Reuter K (2016) Analyzing the case for bifunctional catalysis. Angew Chem Int Ed 55:5210–5214

    Article  Google Scholar 

  • Andersen M, Medford AJ, Nørskov JK, Reuter K (2017a) Scaling-relation based analysis of bifunctional catalysis: the case for well-mixed bimetallic alloys. ACS Catal 7:3960–3967

    Article  Google Scholar 

  • Andersen M, Plaisance CP, Reuter K (2017b) Assessment of mean-field microkinetic models for CO methanation on stepped metal surfaces using accelerated kinetic Monte Carlo. J Chem Phys 147:152705

    Article  ADS  Google Scholar 

  • Andersson M, Bligaard T, Kustov A, Larsen KE, Greeley JP, Johannessen T, Christensen CH, Nørskov JK (2006) Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts. J Catal 239:501–506

    Article  Google Scholar 

  • Andreussi O, Marzari N (2014) Electrostatics of solvated systems in periodic boundary conditions. Phys Rev B 90:24510

    Article  Google Scholar 

  • Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Nørskov JK, Stensgaard I (1998) Design of a surface alloy catalyst for steam reforming. Science 279:1913–1915

    Article  ADS  Google Scholar 

  • Boese AD, Sauer J (2013) Accurate adsorption energies of small molecules on oxide surfaces: CO-MgO(001). Phys Chem Chem Phys 15:16481–16493

    Article  Google Scholar 

  • Bonnet N, Morishita T, Sugino O, Otani M (2012) First-principles molecular dynamics at a constant electrode potential. Phys Rev Lett 109:266101

    Article  ADS  Google Scholar 

  • Burke K (2012) Perspective on density functional theory. J Chem Phys 136:150901

    Article  ADS  Google Scholar 

  • Campbell CT (2017) The degree of rate control: a powerful tool for catalysis research. ACS Catal 7:2770–2779

    Article  Google Scholar 

  • Chan K, Nørskov JK (2015) Electrochemical barriers made simple. J Phys Chem Lett 6:2663–2668

    Article  Google Scholar 

  • Chatterjee A, Voter AF (2010) Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants. J Chem Phys 132:194101

    Article  ADS  Google Scholar 

  • Chen J, Li YF, Sit P, Selloni A (2013) Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase. J Am Chem Soc 135:18774–18777

    Article  Google Scholar 

  • Cohen AJ, Mori-Sanchez P, Yang WT (2012) Challenges for density functional theory. Chem Rev 112:289–320

    Article  Google Scholar 

  • Döpking S, Plaisance CP, Strobusch D, Reuter K, Scheurer C, Matera S (2018) Addressing global uncertainty and sensitivity in first-principles based microkinetic models by an adaptive sparse grid approach. J Chem Phys 148:034102

    Article  ADS  Google Scholar 

  • Dybeck EC, Plaisance CP, Neurock M (2017) Generalized temporal acceleration scheme for kinetic Monte Carlo simulations of surface catalytic processes by scaling the rates of fast reactions. J Chem Theory Comput 13:1525–1538

    Article  Google Scholar 

  • Ertl G (1980) Surface science and catalysis studies on the mechanism of ammonia synthesis: the P.H. Emmett award address. Catal Rev Sci Eng 21:201–223

    Article  Google Scholar 

  • Feibelman PJ (2010) DFT versus the “real world” (or, waiting for godft). Top Catal 53:417–422

    Article  Google Scholar 

  • Filhol JS, Bocquet ML (2007) Charge control of the water monolayer/pd interface. Chem Phys Lett 438:203–207

    Article  ADS  Google Scholar 

  • Garcia-Mota M, Rieger M, Reuter K (2015) Ab initio prediction of the equilibrium shape of supported Ag nanoparticles on α-Al2O3(0001). J Catal 321:1–6

    Article  Google Scholar 

  • Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    Article  Google Scholar 

  • Greeley J (2016) Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Ann Rev Chem Biomol Eng 7:605–635

    Article  Google Scholar 

  • Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mat 3:810–815

    Article  Google Scholar 

  • Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mat 5:909–913

    Article  Google Scholar 

  • Groß A, Gossenberger F, Lin X, Naderian M, Sakong S, Roman T (2014) Water structures at metal electrodes studied by ab initio molecular dynamics simulations. J Electrochem Soc 161:E3015–E3020

    Article  Google Scholar 

  • Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9910

    Article  ADS  Google Scholar 

  • Himmetoglu B, Floris A, de Gironcoli S, Cococcioni M (2014) Hubbard-corrected DFT energy functionals: the LDA+U description of correlated systems. Int J Quantum Chem 114:14–49

    Article  Google Scholar 

  • Janardhanan VM, Deutschmann O (2012) Computational fluid dynamics of catalytic reactors. In: Deutschmann O (ed) Modelling and simulation of heterogeneous catalytic reactions: from the molecular process to the technical system. Wiley-VCH, Weinheim

    Google Scholar 

  • Jinnouchi R, Asahi R (2017) Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm. J Phys Chem Lett 8:4279–4283

    Article  Google Scholar 

  • Klimeš J, Michaelides A (2012) Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137:120901

    Article  ADS  Google Scholar 

  • Kresse G, Furthmüller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  ADS  Google Scholar 

  • Kresse G, Furthmüller J (1996b) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  • Kubas A, Berger D, Oberhofer H, Maganas D, Reuter K, Neese F (2016) Surface adsorption energetics studied with “gold standard” wavefunction based ab initio methods: small molecule binding to TiO2(110). J Phys Chem Lett 7:4207–4212

    Article  Google Scholar 

  • Kulik HJ (2015) Perspective: treating electron over-delocalization with the DFT+ U method. J Chem Phys 142:240901

    Article  Google Scholar 

  • Li P, Henkelman G, Keith JA, Johnson JK (2014) Elucidation of aqueous solvent-mediated hydrogen-transfer reactions by ab initio molecular dynamics and nudged elastic-band studies of NaBH4 hydrolysis. J Phys Chem C 118:21385–21399

    Article  Google Scholar 

  • Li Z, Ma X, Xin H (2017) Feature engineering of machine-learning chemisorption models for catalyst design. Catal Today 280:232–238

    Article  Google Scholar 

  • Libisch F, Huang C, Carter EA (2014) Embedded correlated wavefunction schemes: theory and applications. Acc Chem Res 47:2768–2775

    Article  Google Scholar 

  • Linic S, Jankowiak J, Barteau MA (2004) Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles. J Catal 224:489–493

    Article  Google Scholar 

  • Liu W, Tkatchenko A, Scheffler M (2014) Modeling adsorption and reactions of organic molecules at metal surfaces. Acc Chem Res 47:3369–3377

    Article  Google Scholar 

  • Loffreda D, Delbecq F, Vigne F, Sautet P (2009) Fast prediction of selectivity in heterogeneous catalysis from extended Brønsted-Evans-Polanyi relations: a theoretical insight. Angew Chem Int Ed 48:8978–8980

    Article  Google Scholar 

  • Ma X, Li Z, Achenie LEK, Xin H (2015) Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J Phys Chem Lett 6:3528–3533

    Article  Google Scholar 

  • Maestri M, Cuoci A (2013) Coupling CFD with detailed microkinetic modeling in heterogeneous catalysis. Chem Eng Sci 96:106–117

    Article  Google Scholar 

  • Matera S, Reuter K (2009) First-principles approach to heat and mass transfer effects in model catalyst studies. Catal Lett 133:156–159

    Article  Google Scholar 

  • Matera S, Reuter K (2010) Transport limitations and bistability for in situ CO oxidation at RuO2(110): first-principles based multi-scale modeling. Phys Rev B 82:085446

    Article  ADS  Google Scholar 

  • Matera S, Maestri M, Cuoci A, Reuter K (2014) Predictive-quality surface reaction chemistry in real reactor models: integrating first-principles kinetic Monte Carlo simulations into computational fluid dynamics. ACS Catal 4:4081–4092

    Article  Google Scholar 

  • Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG (2014) Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys 140:084106

    Article  ADS  Google Scholar 

  • Mattioli G, Giannozzi P, Amore Bonapasta A, Guidoni L (2013) Reaction pathways for oxygen evolution promoted by cobalt catalyst. J Am Chem Soc 135:15353–15363

    Article  Google Scholar 

  • Maurer RJ, Ruiz VG, Camarillo-Cisneros J, Liu W, Ferri N, Reuter K, Tkatchenko A (2016) Adsorption structures and energetics of molecules on metal surfaces: bridging experiment and theory. Prog Surf Sci 91:72–100

    Article  ADS  Google Scholar 

  • Medford AJ, Wellendorff J, Vojvodic A, Studt F, Abild-Pedersen F, Jacobsen KW, Bligaard T, Nørskov JK (2014) Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345:197–200

    Article  ADS  Google Scholar 

  • Meskine H, Matera S, Scheffler M, Reuter K, Metiu H (2009) Examination of the concept of degree of rate control by first-principles kinetic Monte Carlo simulations. Surf Sci 603:1724–1730

    Article  ADS  Google Scholar 

  • Newton MA (2008) Dynamic adsorbate/reaction induced structural change of supported metal nanoparticles: heterogeneous catalysis and beyond. Chem Soc Rev 37:2644–2657

    Article  Google Scholar 

  • Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  • Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152:J23–J26

    Article  Google Scholar 

  • Nørskov JK, Bligaard T, Hvolbæk B, Abild-Pedersen F, Chorkendorff I, Christensen CH (2008) The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev 37:2163–2171

    Article  Google Scholar 

  • Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Article  Google Scholar 

  • Nørskov JK, Studt F, Abild-Pedersen F, Bligaard T (2014) Fundamental concepts in heterogeneous catalysis. Wiley, Hoboken

    Book  Google Scholar 

  • Otani M, Sugino O (2006) First-principles calculations of charged surfaces and interfaces: a plane-wave nonrepeated slab approach. Phys Rev B 73:115407

    Article  ADS  Google Scholar 

  • Ouyang R, Liu JX, Li WX (2013) Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. J Am Chem Soc 135:1760–1771

    Article  Google Scholar 

  • Pacchioni G (2008) Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvement. J Chem Phys 128:182505

    Article  ADS  Google Scholar 

  • Pinto LMC, Quaino P, Arce MD, Santos E, Schmickler W (2014) Electrochemical adsorption of OH on Pt(111) in alkaline solutions: combining DFT and molecular dynamics. Chem Phys Chem 15:2003–2009

    Article  Google Scholar 

  • Quaranta V, Hellström M, Behler J (2017) Proton-transfer mechanisms at the water–ZnO interface: the role of presolvation. J Phys Chem Lett 8:1476–1483

    Article  Google Scholar 

  • Ren X, Rinke P, Joas C, Scheffler M (2012) Random-phase approximation and its applications in computational chemistry and materials science. J Mater Sci 47:7447–7471

    Article  ADS  Google Scholar 

  • Reuter K (2013) First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: concepts, status and frontiers. In: Deutschmann O (ed) Modelling and simulation of heterogeneous catalytic reactions: from the molecular process to the technical system. Wiley-VCH, Weinheim

    Google Scholar 

  • Reuter K (2016) Ab initio thermodynamics and first-principles microkinetics for surface catalysis. Catal Lett 146:541–563

    Article  Google Scholar 

  • Reuter K, Plaisance CP, Oberhofer H, Andersen M (2017) Perspective: on the active site model in computational catalyst screening. J Chem Phys 146:040901

    Article  ADS  Google Scholar 

  • Richter NA, Sicolo S, Levchenko SV, Sauer J, Scheffler M (2013) Concentration of vacancies at metal-oxide surfaces: case study of MgO(100). Phys Rev Lett 111:045502

    Article  ADS  Google Scholar 

  • Ringe S, Oberhofer H, Hille C, Matera S, Reuter K (2016) Function-space based solution scheme for the size-modified Poisson-Boltzmann equation in full-potential DFT. J Chem Theory Comput 12:4052–4066

    Article  Google Scholar 

  • Rittmeyer SP, Bukas VJ, Reuter K (2018) Energy dissipation at metal surfaces. Adv Phys X 3:1381574

    Google Scholar 

  • Rossmeisl J, Skúlason E, Bjorketun MJ, Tripkovic V, Nørskov JK (2008) Modeling the electrified solid-liquid interface. Chem Phys Lett 466:68–71

    Article  ADS  Google Scholar 

  • Rossmeisl J, Chan K, Ahmed R, Tripkovic V, Bjorketun ME (2013) ph in atomic scale simulations of electrochemical interfaces. Phys Chem Chem Phys 15:10321–10325

    Article  Google Scholar 

  • Sabbe MK, Reyniers MF, Reuter K (2012) First-principles kinetic modeling in heterogeneous catalysis: An industrial perspective on best-practice, gaps and needs. Catal. Sci. Technol. 2:2010–2024

    Article  Google Scholar 

  • Sauer J, Freund HJ (2015) Models in catalysis. Cat Lett 145:109–125

    Article  Google Scholar 

  • Schimka L, Harl J, Stroppa A, Grüneis A, Marsman M, Mittendorfer F, Kresse G (2010) Accurate surface and adsorption energies from many-body perturbation theory. Nat Mater 9:741–744

    Article  ADS  Google Scholar 

  • Schlögl R (2015) Heterogeneous catalysis. Angew Chem Int Ed 54:3465–3520

    Article  Google Scholar 

  • Schnur S, Groß A (2011) Challenges in the first-principles description of reactions in electrocatalysis. Catal Today 165:129–137

    Article  Google Scholar 

  • Sinstein M, Scheurer C, Matera S, Blum V, Reuter K, Oberhofer H (2017) Efficient implicit solva-tion method for full potential dft. J Chem Theor Comput 13:5582–5603

    Article  Google Scholar 

  • Skúlason E, Tripkovic V, Björketun ME, Gudmundsdottir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114:18182–18197

    Article  Google Scholar 

  • Stamatakis M, Vlachos DG (2012) Unraveling the complexity of catalytic reactions via kinetic Monte Carlo simulation: current status and frontiers. ACS Catal 2:2648–2663

    Article  Google Scholar 

  • Stecher T, Reuter K, Oberhofer H (2016) First-principles free-energy barriers for photo-electrochemical surface reactions: proton abstraction at TiO2(110). Phys Rev Lett 117:276001

    Article  ADS  Google Scholar 

  • Stodt D, Noei H, Hättig C, Wang Y (2013) A combined experimental and computational study on the adsorption and reactions of NO on rutile TiO2. Phys Chem Chem Phys 15:466–472

    Article  Google Scholar 

  • Surendrala S, Todorova M, Finnis MW, Neugebauer, J (2018) First-principles approach to model electrochemical reactions: Understanding the fundamental mechanisms behind Mg corrosion. Phys. Rev. Lett. 120:246801

    Google Scholar 

  • Sutton JE, Vlachos DG (2015) Building large microkinetic models with first-principles[U+05F3] accuracy at reduced computational cost. Chem Eng Sci 121:190–199

    Article  Google Scholar 

  • Sutton JE, Guo W, Katsoulakis MA, Vlachos DG (2016) Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. Nat Chem 8:331–337

    Article  Google Scholar 

  • Toulhoat H, Raybaud P (2003) Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors. J Catal 216:63–72

    Article  Google Scholar 

  • Ulissi ZW, Medford AJ, Bligaard T, Nørskov JK (2017a) To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat Commun 8:14621

    Article  ADS  Google Scholar 

  • Ulissi ZW, Tang MT, Xiao J, Liu X, Torelli DA, Karamad M, Cummins K, Hahn C, Lewis NS, Jaramillo TF, Chan K, Nørskov JK (2017b) Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal 7:6600–6608

    Article  Google Scholar 

  • van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis: a conceptual and computational approach. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Wang T, Jelic J, Rosenthal D, Reuter K (2013) Exploring pretreatment-morphology relationships: ab initio Wulff construction for RuO2 nanoparticles under oxidizing conditions. Chem Cat Chem 5:3398–3403

    Google Scholar 

  • Yip S (2005) Handbook of materials modeling. Springer, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Reuter .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Reuter, K., Metiu, H. (2018). A Decade of Computational Surface Catalysis. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics