Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Equine Cognition

  • Konstanze KruegerEmail author
  • Isabell Marr
  • Kate Farmer
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_962-1

Synonyms

Introduction

The equids (Equidae) comprise zebras, donkeys, and horses. They are not considered to be independent taxa and can be crossbred, with wild animals sometimes crossbreeding in overlapping habitats. In general, the resulting equid hybrids are called zebroids (zebra and any other equid), mules (male donkey and female horse), or hinnies (male horse and female donkey). Other informal labels include zebrules, dedonks, and zorses. The hybrids are usually infertile.

Equids differ in their social organization and have different habitats (Klingel 1972; Fig. 1). Some species are exclusively wild, and some include domestic types. In evaluating their cognitive capacities, it is important to consider the species’ social and environmental challenges (Griffin et al. 2017). Only by knowing the conditions to which animals have to adapt can their cognitive capacities be compared in relation...
This is a preview of subscription content, log in to check access.

References

  1. Baragli, P., & Regolin, L. (2008). Cognitive tests in equids (Equus caballus and Equus Asinus). In K. Krueger & K. Krueger (Eds.), Proceedings of the 3. International Equine Science Meeting. Wald: Xenophon Publishing.Google Scholar
  2. Brooks, C. J., & Harris, S. (2008). Directed movement and orientation across a large natural landscape by zebras, Equus burchelli antiquorum. Animal Behaviour, 76(2), 277–285.CrossRefGoogle Scholar
  3. Cozzi, A., Sighieri, C., Gazzano, A., Nicol, C. J., & Baragli, P. (2010). Post-conflict friendly reunion in a permanent group of horses (Equus caballus). Behavioural Processes, 85(2), 185–190.CrossRefPubMedGoogle Scholar
  4. Fischhoff, I. R., Sundaresan, S. R., Cordingley, J., Larkin, H. M., Sellier, M.-J., & Rubenstein, D. I. (2007). Social relationships and reproductive state influence leadership roles in movements of plains zebra, Equus burchellii. Animal Behaviour, 73(5), 825–831.CrossRefGoogle Scholar
  5. Gabor, V., & Gerken, M. (2014). Shetland ponies (Equus caballus) show quantity discrimination in a matching-to-sample design. Animal Cognition, 17(6), 1233–1243.Google Scholar
  6. Griffin, A. S., Tebbich, S., & Bugnyar, T. (2017). Animal cognition in a human-dominated world. Animal Cognition, 20(1), 1–6.CrossRefPubMedGoogle Scholar
  7. Hanggi, E. B., & Ingersoll, J. F. (2009). Long-term memory for categories and concepts in horses (Equus caballus). Animal Cognition, 13(3), 451–462.CrossRefGoogle Scholar
  8. Hausberger, M., Roche, H., Henry, S., & Visser, E. K. (2008). A review of the human-horse relationship. Applied Animal Behaviour Science, 109(1), 1–24.CrossRefGoogle Scholar
  9. Hothersall, B., Gale, E., Harris, P., & Nicol, C. (2010). Cue use by foals (Equus caballus) in a discrimination learning task. Animal Cognition, 13(1), 63–74.CrossRefPubMedGoogle Scholar
  10. Houpt, K. A. (2007). Imprinting training and conditioned taste aversion. Behavioural Processes, 76, 14–16.CrossRefPubMedGoogle Scholar
  11. Innes, L., & McBride, S. (2008). Negative versus positive reinforcement: An evaluation of training strategies for rehabilitated horses. Applied Animal Behaviour Science, 112, 357–368.CrossRefGoogle Scholar
  12. Klingel, H. (1972). The behavior of horses (Equidae). Handbuch der Zoologie, 8, 1–68.Google Scholar
  13. Krueger, K., & Flauger, B. (2011). Olfactory recognition of individual competitors by means of faeces in horse (Equus caballus). Animal Cognition, 14(2), 245–257.CrossRefPubMedGoogle Scholar
  14. Krueger, K., Farmer, K., & Heinze, J. (2014a). The effects of age, rank and neophobia on social learning in horses. Animal Cognition, 17(3), 645–655.CrossRefPubMedGoogle Scholar
  15. Krueger, K., Flauger, B., Farmer, K., & Hemelrijk, C. (2014b). Movement initiation in groups of feral horses. Behavioural Processes, 103, 91–101.CrossRefPubMedGoogle Scholar
  16. Krueger, K., Schneider, G., Flauger, B., & Heinze, J. (2015). Context-dependent third-party intervention in agonistic encounters of male Przewalski horses. Behavioural Processes, 121, 54–62.CrossRefPubMedGoogle Scholar
  17. Lansade, L., & Simon, F. (2010). Horses’ learning performances are under the influence of several temperamental dimensions. Applied Animal Behaviour Science, 125(1–2), 30–37.CrossRefGoogle Scholar
  18. Linklater, W. L. (2000). Adaptive explanation in socio-ecology: Lessons from the Equidae. Biological Reviews of the Cambridge Philosophical Society, 75(1), 1–20.CrossRefPubMedGoogle Scholar
  19. Löckener, S., Reese, S., Erhard, M., & Wöhr, A. C. (2016). Pasturing in herds after housing in horseboxes induces a positive cognitive bias in horses. Journal of Veterinary Behavior, 11, 50–55.CrossRefGoogle Scholar
  20. Malavasi, R., & Huber, L. (2016). Evidence of heterospecific referential communication from domestic horses (Equus caballus) to humans. Animal Cognition, 19(5), 899–909.CrossRefPubMedGoogle Scholar
  21. Mejdell, C. M., Buvik, T., Jørgensen, G. H. M., & Bøe, K. E. (2016). Horses can learn to use symbols to communicate their preferences. Applied Animal Behaviour Science, 184, 66–73.CrossRefGoogle Scholar
  22. Murray, L. M. A., Byrne, K., & D’Eath, R. B. (2013). Pair-bonding and companion recognition in domestic donkeys (Equus asinus). Applied Animal Behaviour Science, 143(1), 67–74.CrossRefGoogle Scholar
  23. Osthaus, B., Proops, L., Hocking, I., & Burden, F. (2013). Spatial cognition and perseveration by horses, donkeys and mules in a simple A-not-B detour task. Animal Cognition, 16(2), 301–305.CrossRefPubMedGoogle Scholar
  24. Pfungst, O. (1907). Der Kluge Hans. Ein Beitrag zur nichtverbalen Kommunikation. Frankfurt am Main: Frankfurter Fachbuchhandlung für Psychologie.Google Scholar
  25. Proops, L., McComb, K., & Reby, D. (2009a). Cross-modal individual recognition in domestic horses (Equus caballus). Proceeding of the National Academy of Science U.S.A., 106(3), 947–951.CrossRefGoogle Scholar
  26. Proops, L., Burden, F., & Osthaus, B. (2009b). Mule cognition: A case of hybrid vigour? Animal Cognition, 12(1), 75–84.CrossRefPubMedGoogle Scholar
  27. Rochais, C., Henry, S., Fureix, C., & Hausberger, M. (2016). Investigating attentional processes in depressive-like domestic horses (Equus caballus). Behavioural Processes, 124, 93–96.CrossRefPubMedGoogle Scholar
  28. Rogers, L. J. (2010). Relevance of brain and behavioural lateralization to animal welfare. Applied Animal Behaviour Science, 127(1–2), 1–11.CrossRefGoogle Scholar
  29. Schilder, M. B. H. (1990). Interventions in a herd of semi – captive plains zebras. Behaviour, 112(1–2), 53–83.CrossRefGoogle Scholar
  30. Schuetz, A., Farmer, K., & Krueger, K. (2016). Social learning across species: Horses (Equus caballus) learn from humans by observation. Animal Cognition, 20(3), 567–573.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Konstanze Krueger
    • 1
    • 5
    Email author
  • Isabell Marr
    • 2
    • 3
  • Kate Farmer
    • 4
  1. 1.Equine ManagementNurtingen-Geislingen UniversityNurtingenGermany
  2. 2.Behavioural Physiology of Farm AnimalsUniversity of HohenheimStuttgartGermany
  3. 3.Faculty Agriculture, Economics and Management, Department Equine EconomicsNuertingen-Geislingen UniversityNürtingenGermany
  4. 4.School of Psychology & NeuroscienceSt Andrews UniversityScotlandUK
  5. 5.Department of Zoology/Evolutionary BiologyUniversity of RegensburgRegensburgGermany