Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Perissodactyla Cognition

  • Konstanze KruegerEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_903-1

Synonyms

Introduction

Perissodactyla comprise the tapirs (Tapiridae), the rhinos (Rhinocerotidae), and the equids (Equidae). In order to evaluate their cognitive capacities, it is important to consider the species’ social and environmental challenges (Griffin et al. 2017). Only by knowing the challenges, to which animals have to adapt, their cognitive capacities can be relativized to other species, for example, if humans are not encountered on regular basis, animals may not need to learn how to read human given cues, even though they may be able to do so in a captive situation.

The Perissodactyla show large variation in their social organization, and in the environments in which they live. All Perissodactyla species are heavily hunted and some species, such as the Asian Baird’s tapir (T. bairdii), the Malayan tapir (T. indicus), the Indian rhino (Dicerorhinus sumatrensis), and the Javan...

This is a preview of subscription content, log in to check access.

References

  1. Baragli, P., & Regolin, L. (2008). Cognitive tests in equids (Equus caballus and Equus Asinus). In K. Krueger & K. Krueger (Eds.), Proceedings of the 3 international equine science meeting. Wald: Xenophon Publishing.Google Scholar
  2. Brooks, C. J., & Harris, S. (2008). Directed movement and orientation across a large natural landscape by zebras, Equus burchelli antiquorum. Animal Behaviour, 76(2), 277–285.CrossRefGoogle Scholar
  3. Carlstead, K., & Brown, J. L. (2005). Relationships between patterns of fecal corticoid excretion and behavior, reproduction, and environmental factors in captive black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros. Zoo Biology, 24(3), 215–232.CrossRefGoogle Scholar
  4. Cinková, I., & Policht, R. (2016). Sex and species recognition by wild male southern white rhinoceros using contact pant calls. Animal Cognition, 19(2), 375–386.CrossRefPubMedGoogle Scholar
  5. Daniel, J. C., & Mikulka, P. J. (1998). Discrimination learning in the white rhinoceros. Applied Animal Behaviour Science, 58(1–2), 197–202.CrossRefGoogle Scholar
  6. Fischhoff, I. R., Sundaresan, S. R., Cordingley, J., Larkin, H. M., Sellier, M.-J., & Rubenstein, D. I. (2007). Social relationships and reproductive state influence leadership roles in movements of plains zebra, Equus burchellii. Animal Behaviour, 73(5), 825–831.CrossRefGoogle Scholar
  7. Gabor, V., & Gerken, M. (2014). Shetland ponies (Equus caballus) show quantity discrimination in a matching-to-sample design. Animal Cognition, 17(6), 1233–1243.CrossRefPubMedGoogle Scholar
  8. Griffin, A. S., Tebbich, S., & Bugnyar, T. (2017). Animal cognition in a human-dominated world. Animal Cognition, 20(1), 1–6.CrossRefPubMedGoogle Scholar
  9. Grzimek, B., Hay, J. T., & Hutchins, M. (2003). Grzimek’s animal life encyclopedia (Vol. 17). Detroit: Gale Cengage. ISBN:0-7876-5362-4.Google Scholar
  10. Hanggi, E. B. (2003). Discrimination learning based on relative size concepts in horses (Equus Caballus). Applied Animal Behaviour Science, 83(3), 201–213.CrossRefGoogle Scholar
  11. Hanggi, E. B., & Ingersoll, J. F. (2009). Long-term memory for categories and concepts in horses (Equus caballus). Animal Cognition, 13(3), 451–462.CrossRefGoogle Scholar
  12. Hausberger, M., Roche, H., Henry, S., & Visser, E. K. (2008). A review of the human-horse relationship. Applied Animal Behaviour Science, 109(1), 1–24.CrossRefGoogle Scholar
  13. Klingel, H. (1972). The behavior of horses (Equidae). Handbuch der Zoologie, 8, 1–68.Google Scholar
  14. Krueger, K., & Flauger, B. (2011). Olfactory recognition of individual competitors by means of faeces in horse (Equus caballus). Animal Cognition, 14(2), 245–257.CrossRefPubMedGoogle Scholar
  15. Krueger, K., Farmer, K., & Heinze, J. (2014a). The effects of age, rank and neophobia on social learning in horses. Animal Cognition, 17(3), 645–655.CrossRefPubMedGoogle Scholar
  16. Krueger, K., Flauger, B., Farmer, K., & Hemelrijk, C. (2014b). Movement initiation in groups of feral horses. Behavioural Processes, 103, 91–101.CrossRefPubMedGoogle Scholar
  17. Krueger, K., Schneider, G., Flauger, B., & Heinze, J. (2015). Context-dependent third-party intervention in agonistic encounters of male Przewalski horses. Behavioural Processes, 121, 54–62.CrossRefPubMedGoogle Scholar
  18. Linklater, W. L. (2000). Adaptive explanation in socio-ecology: Lessons from the Equidae. Biological Reviews of the Cambridge Philosophical Society, 75(1), 1–20.CrossRefPubMedGoogle Scholar
  19. Malavasi, R., & Huber, L. (2016). Evidence of heterospecific referential communication from domestic horses (Equus caballus) to humans. Animal Cognition, 19(5), 899–909.CrossRefPubMedGoogle Scholar
  20. Marneweck, C., Jürgens, A., & Shrader, A. M. (2017). Dung odours signal sex, age, territorial and oestrous state in white rhinos. Proceedings of the Royal Society of London B, 284(1846).Google Scholar
  21. Murray, L. M. A., Byrne, K., & D’Eath, R. B. (2013). Pair-bonding and companion recognition in domestic donkeys (Equus asinus). Applied Animal Behaviour Science, 143(1), 67–74.CrossRefGoogle Scholar
  22. Osthaus, B., Proops, L., Hocking, I., & Burden, F. (2013). Spatial cognition and perseveration by horses, donkeys and mules in a simple A-not-B detour task. Animal Cognition, 16(2), 301–305.CrossRefPubMedGoogle Scholar
  23. Pfungst, O. (1907). Der Kluge Hans. Ein Beitrag zur nichtverbalen Kommunikation. Frankfurt am Main: Frankfurter Fachbuchhandlung für Psychologie.Google Scholar
  24. Pinho, G. M., Gonçalves da Silva, A., Hrbek, T., Venticinque, E. M., & Farias, I. P. (2014). Kinship and social behavior of lowland tapirs (Tapirus terrestris) in a central Amazon landscape. PloS One, 9(3), e92507.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Proops, L., Burden, F., & Osthaus, B. (2009). Mule cognition: A case of hybrid vigour? Animal Cognition, 12(1), 75–84.CrossRefPubMedGoogle Scholar
  26. Ringhofer, M., & Yamamoto, S. (2017). Domestic horses send signals to humans when they face with an unsolvable task. Animal Cognition, 20(3), 397–405.CrossRefPubMedGoogle Scholar
  27. Rubenstein, D. I. (1986). Ecology and sociality in horses and zebras. In D. I. Rubenstein & R. W. Wrangham (Eds.), Ecological aspects of social evolution (pp. 282–302). Princeton: Princeton University Press.Google Scholar
  28. Schilder, M. B. H. (1990). Interventions in a herd of semi – Captive plains zebras. Behaviour, 112(1–2), 53–83.CrossRefGoogle Scholar
  29. Schuetz, A., Farmer, K., & Krueger, K. (2016). Social learning across species: Horses (Equus caballus) learn from humans by observation. Animal Cognition, 20(3), 567–573.CrossRefPubMedGoogle Scholar
  30. Zenzinger, S. (2010). Experimentelle Untersuchungen zur optischen Kommunikation bei im Zoo gehaltenen Schabracken- und Flachlandtapiren (Tapirus indicus und Tapirus terrestris). Der Zoologische Garten, 79(4–5), 162–174.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty Agriculture, Economics and Management, Department Equine EconomicsNuertingen-Geislingen UniversityNürtingenGermany
  2. 2.Department of Zoology/Evolutionary BiologyUniversity of RegensburgRegensburgGermany

Section editors and affiliations

  • Lauren Guillette
    • 1
  1. 1.University of St. AndrewsSt. AndrewsUK