Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford


  • Suman YadavEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_821-1


Archaebacteria are group of microorganisms that are anaerobic autotrophs, come under a separate domain, and live under extremely hostile condition.


Archea have inhabited Earth for nearly 4 billion of its 4.6 billion years in existence, making them possibly the oldest living life form (Schopf 1983). Early time the earth is thought to have very less oxygen, but ample carbon dioxide. Earlier the bacteria and archaea did not require oxygen, but utilize carbon dioxide. In two billion years, they have covered the ocean floors, forming strong, collective mats. However, around 2.4 billion years ago global oxygen levels increased that may be due to release of oxygen from the Earth’s crust (Rowland 2010). Like eukarya and bacteria the archaea is also diverse in nature both morphologically and physiologically. Morphologically they may be rod shaped, spherical, cuboidal, spiral, plate shaped, and irregular. Some are single celled and some are filamentous or aggregates....

This is a preview of subscription content, log in to check access.


  1. Allers, T., & Mevarech, M. (2005). Archaeal genetics – The third way. Nature Reviews. Genetics, 6(1), 58–73.CrossRefGoogle Scholar
  2. Baker, B. J., Tyson, G. W., Webb, R. I., Flanagan, J., Hugenholtz, P., Allen, E. E., & Banfield, J. F. (2006). Lineages of acidophilic archaea revealed by community genomic analysis. Science, 314(5807), 1933–1935.CrossRefGoogle Scholar
  3. Brochier-Armanet, C., Deschamps, P., Lopez-Garcia, P., Zivanoic, Y., Rodriguez-Valera, F., & Moreira, D. (2011). Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea. ISME Journal, 5, 1291–1302.CrossRefGoogle Scholar
  4. Cadillo-Quiroz, H., Didelot, X., Held, N. L., Herrera, A., Darling, A., Reno, M. L., Krause, D. J., & Whitaker, R. J. (2012). Patterns of gene flow define species of thermophilic Archaea. PLoS Biology, 10, e1001265.CrossRefGoogle Scholar
  5. Copeland, H. F. (1938). The kingdoms of organisms. Quarterly Review of Biology, 13, 383–420.CrossRefGoogle Scholar
  6. Esko, J. D., Doering, T. L., & Raetz, C. R. H. (2009). Chapter 20, Eubacteria and Archaea. In A. Varki, R. D. Cummings, J. D. Esko, et al. (Eds.), Essentials of glycobiology (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  7. Galagan, J. E., Nusbaum, C., Roy, A., Endrizzi, M. G., Macdonald, P., FitzHugh, W., Calvo, S., Engels, R., Smirnov, S., Atnoor, D., Brown, A., Allen, N., Naylor, J., Stange-Thomann, N., DeArellano, K., Johnson, R., Linton, L., McEwan, P., McKernan, K., Talamas, J., Tirrell, A., Ye, W., Zimmer, A., Barber, R. D., Cann, I., Graham, D. E., Grahame, D. A., Guss, A. M., Hedderich, R., Ingram-Smith, C., Kuettner, H. C., Krzycki, J. A., Leigh, J. A., Li, W., Liu, J., Mukhopadhyay, B., Reeve, J. N., Smith, K., Springer, T. A., Umayam, L. A., White, O., White, R. H., Conway de Macario, E., Ferry, J. G., Jarrell, K. F., Jing, H., Macario, A. J., Paulsen, I., Pritchett, M., Sowers, K. R., Swanson, R. V., Zinder, S. H., Lander, E., Metcalf, W. W., & Birren, B. (2002). The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Research, 12(4), 532–542.CrossRefGoogle Scholar
  8. Gupta, R. S. (1998). Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiology and Molecular Biology Reviews: MMBR, 62(4), 1435–1491.PubMedGoogle Scholar
  9. Haeckel, E. (1866). Generelle Morphologie der Organismen. Berlin: Reimer.CrossRefGoogle Scholar
  10. Krieg, N. (2005). Bergey’s manual of systematic bacteriology (pp. 21–26). New York: Springer.CrossRefGoogle Scholar
  11. Naor, A., Lapierre, P., Mevarech, M., Papke, R. T., & Gophna, U. (2012). Low species barriers in halophilic archaea and the formation of recombinant hybrids. Current Biology, 22, 1444–1448.CrossRefGoogle Scholar
  12. Nelson-Sathi, S., Sousa, F. L., Roettger, M., Lozada-Chavez, N., Thiergart, T., Janssen, A., Bryant, D., Landan, G., Schonheit, P., Siebers, B., Mclnerney, J. O., & Martin, W. F. (2015). Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature, 517, 77–80.CrossRefGoogle Scholar
  13. Rowland, T. (2010). Archea: The third domain of life. Do they live on comets? Independent. February 5, 2010. http://www.independent.com/news/2010/feb/05/Archea-third-domain-life/
  14. Schopf, J. W. (Ed.). (1983). Earth’s earliest biosphere: Its origin and evolution (p. 543). Princeton: Princeton University Press.Google Scholar
  15. Van Volferen, M., Wagner, A., van der Does, C., & Albers, S.-V. (2016). The archaeal Ced system imports DNA. Proceedings of the National Academy of Sciences of the United States of America, 113, 2496–2501.CrossRefGoogle Scholar
  16. Willey, J. M., Sherwood, L., Woolverton, C. J., Prescott, L. M., & Willey, J. M. (2011). Prescott’s microbiology. New York: McGraw-Hill.Google Scholar
  17. Woese, C. (1994). There must be a prokaryote somewhere: Microbiology’s search for itself. Microbiological Reviews, 58, 1–9.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BotanyInstitute of Science, Banaras Hindu UniversityVaranasiIndia

Section editors and affiliations

  • Mystera M. Samuelson
    • 1
  1. 1.The Institute for Marine Mammal StudiesGulfportUSA