Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Artiodactyla Navigation

  • Clifton B. Burns
  • Kristine O. EvansEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_815-1



Characteristic movements and behaviors exhibited by members of the mammalian taxonomic order Artiodactyla that best meet their survival and fitness needs.


Even-toed ungulates, classified in the diverse order Artiodactyla, traverse landscapes in their home ranges and migration routes in ways that best serve their needs to survive and reproduce. According to the IUCN Red List, there are 10 families within Artiodactyla (e.g., Bovidae, Cervidae, Giraffidae, Suidae, and others) including the recent consolidation with the 13 families of order Cetacea (i.e., Balaenopteridae, Delphinidae, Phocoenidae, etc.) to form the proposed monophyletic order Cetartiodactyla (International Union for the Conservation of Nature, n.d.). This group of marine mammals has been shown to display the closest genetic relatedness to artiodactyls compared to any other taxon...

This is a preview of subscription content, log in to check access.


  1. Allan, B. M., Nimmo, D. G., Ierodiaconou, D., VanDerWal, J., Lian, P. K., & Ritchie, E. G. (2018). Futurecasting ecological research: The rise of technoecology. Ecosphere, 9(5), e02163.CrossRefGoogle Scholar
  2. Berger, J. (2004). The last mile: How to sustain long-distance migration in mammals. Conservation Biology, 18(2), 320–331.CrossRefGoogle Scholar
  3. Bertrand, M. R., DeNicola, A. J., Beissinger, S. R., & Swihart, R. K. (1996). Effects of parturition on home ranges and social affiliations of female white-tailed deer. Journal of Wildlife Management, 60(4), 899–909.CrossRefGoogle Scholar
  4. Bevanda, M., Fronhofer, E. A., Muller, M. H. J., & Reineking, B. (2015). Landscape configuration is a major determinant of home range size variation. Ecosphere, 6(10), 1–12.CrossRefGoogle Scholar
  5. Börger, L., Dalziel, B. D., & Fryxell, J. M. (2008). Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecology Letters, 11(6), 637–650.CrossRefGoogle Scholar
  6. Breed, M. D., & Moore, J. (2016). Animal behavior (2nd ed.). Amsterdam: Elsevier/Academic.Google Scholar
  7. Cagnacci, F., Boitani, L., Powell, R. A., & Boyce, M. S. (2010). Animal ecology meets GPS-based radio telemetry: A perfect storm of opportunities and challenges. Philosophical Transactions of the Royal Society B, 365, 2157–2162.CrossRefGoogle Scholar
  8. Cain, J. W., III, Krausman, P. R., Rosenstock, S. S., & Turner, J. C. (2010). Mechanisms of thermoregulation and water balance in desert ungulates. The Journal of Wildlife Management, 34(3), 570–581.Google Scholar
  9. Chynoweth, M. W., Lepczyk, C. A., Litton, C. M., Hess, S. C., Kellner, J. R., & Cordell, S. (2015). Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape. PLoS One, 10(3), e0119231.CrossRefGoogle Scholar
  10. Clifford, A. B. (2010). The evolution of the unguligrade manus in artiodactyls. Journal of Vertebrate Paleontology, 6, 1827–1839.CrossRefGoogle Scholar
  11. DeMars, C. A., Auger-Methe, M., Schlagel, U. E., & Boutin, S. (2013). Inferring parturition and neonate survival from movement patterns of female ungulates: A case study using woodland caribou. Ecology and Evolution, 3(12), 4149–4160.CrossRefGoogle Scholar
  12. Duquette, J. F., Belant, J. L., Svoboda, N. J., Beyer, D. E., Jr., & Lederle, P. E. (2015). Scale dependence of female ungulate reproductive success in relation to nutritional condition, resource selection and multi-predator avoidance. PLoS One, 10(10), e0140433.  https://doi.org/10.1371/journal.pone.0140433.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Estes, R. D. (1976). The significance of breeding synchrony of wildebeest. African Journal of Ecology, 14, 135–152.CrossRefGoogle Scholar
  14. Fennessy, J. (2009). Home range and seasonal movements of Giraffa camelopardalis angolensis in the northern Namib Desert. African Journal of Ecology, 47(3), 318–327.CrossRefGoogle Scholar
  15. Frame, P. F., Cluff, H. D., & Hik, D. S. (2008). Wolf reproduction in response to caribou migration and industrial development on the Central Barrens of mainland Canada. Arctic, 61(2), 134–142.Google Scholar
  16. Franzmann, A. W. (2000). Moose. In S. Demarais & P. R. Krausman (Eds.), Ecology and management of large mammals in North America (pp. 578–594). Upper Saddle River: Prentice Hall.Google Scholar
  17. Geist, V. (1974). On the relationship of social evolution and ecology in ungulates. Integrative and Comparative Biology, 14(1), 205–220.Google Scholar
  18. Gingery, T. M., Lehman, C. P., & Millspaugh, J. P. (2017). Space use of female elk (Cervus canadensis nelson) in the Black Hills, South Dakota. Western North American Naturalism, 77(1), 102–110.CrossRefGoogle Scholar
  19. Hayes, C. L., & Krausman, P. R. (1993). Nocturnal activity of female desert mule deer. Journal of Wildlife Management, 57, 897–904.CrossRefGoogle Scholar
  20. Hebblewhite, M., & Haydon, D. T. (2010). Distinguishing technology from biology: A critical review of the use of GPS telemetry data in ecology. Philosophical Transactions of the Royal Society, 365, 2303–2312.CrossRefGoogle Scholar
  21. Holdo, R. M., Holt, R. D., & Fryxell, J. M. (2009). Opposing rainfall and plant nutritional gradients best explain the wildebeest migration in the Serengeti. The American Naturalist, 173, 431–445.CrossRefGoogle Scholar
  22. International Union for Conservation of Nature. The IUCN red list of threatened species. In IUCN red list of threatened species. www.iucnredlist.org/
  23. Janis, C. M., & Ehrhardt, D. (1988). Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zoological Journal of the Linnean Society, 92(3), 267–284.CrossRefGoogle Scholar
  24. Jesmer, B. R., Merkle, J. A., Goheen, J. R., Aikens, E. O., Beck, J. L., Courtemanch, A. B., Hurley, M. A., McWhirter, D. E., Miyasaki, H. M., Monteith, K. L., & Kauffman, M. J. (2018). Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science, 361, 1023–1025.CrossRefGoogle Scholar
  25. Kie, J. G. (1999). Optimal foraging and risk of predation: Effects on behavior and social structure in ungulates. Journal of Mammalogy, 80(4), 1114–1129.CrossRefGoogle Scholar
  26. King, A. J., Wilson, A. M., Wilshin, S. D., Lowe, J., Haddadi, H., Hailes, S., & Morton, A. J. (2012). Selfish-herd behaviour of sheep under threat. Current Biology, 22(14), 561–562.CrossRefGoogle Scholar
  27. Lendrum, P. E., Anderson, C. R., Jr., Monteith, K. L., Jenks, J. A., & Bowyer, R. T. (2013). Migrating mule deer: Effects of anthropogenically altered landscapes. PLoS One, 8(5), e64548.  https://doi.org/10.1371/journal.pone.0064548.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Marino, A., & Baldi, R. (2014). Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary guanaco. PLoS One, 9(2), e89060.CrossRefGoogle Scholar
  29. Mendoza, M., & Palmqvist, P. (2008). Hypsodonty in ungulates: An adaptation for grass consumption or for foraging in open habitat? The Journal of Zoology, 274(2), 134–142.CrossRefGoogle Scholar
  30. Millspaugh, J. J., & Marzluff, J. M. (2001). Radio tracking and animal populations. San Diego: Academic.CrossRefGoogle Scholar
  31. Morrell, L. J., Ruxton, G. D., & James, R. (2011). Spatial positioning in the selfish herd. Behavioral Ecology, 22(1), 16–22.CrossRefGoogle Scholar
  32. Nelson, K. S., Bwala, D. A., & Nuhu, E. J. (2015). The dromedary camel; a review on the aspects of history, physical description, adaptations, behavior/lifecycle, diet, reproduction, uses, genetics and diseases. Nigerian Veterinary Journal, 36(4), 1299–1317.Google Scholar
  33. Nikaido, M., Rooney, A. P., & Okada, N. (1999). Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: Hippopotamuses are the closest extant relatives of whales. Proceedings of the National Academy of Sciences of the USA, 96, 10261–10266.CrossRefGoogle Scholar
  34. Parker, K. L. (1988). Effects of heat, cold and rain on coastal black-tailed deer. Canadian Journal of Zoology, 66, 2475–2483.CrossRefGoogle Scholar
  35. Parker, K. L., Robbins, C. T., & Hanley, T. A. (1984). Energy expenditures for locomotion by mule deer and elk. Journal of Wildlife Management, 48, 474–488.CrossRefGoogle Scholar
  36. Post, E., & Stenseth, N. C. (1999). Climatic variability, plant phenology, and northern ungulates. Ecology, 80(4), 1322–1339.CrossRefGoogle Scholar
  37. Powell, R. A., & Mitchell, M. S. (2012). What is a home range? Journal of Mammalogy, 93(4), 948–958.CrossRefGoogle Scholar
  38. Price, S. A., Bininda-Emonds, O. R. P., & Gittleman, J. L. (2005). A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biological Reviews, 80, 445–473.CrossRefGoogle Scholar
  39. Rivrud, I. M., Loe, L. E., & Mysterud, A. (2010). How does local weather predict red deer home range size at different temporal scales? Journal of Animal Ecology, 79, 1280–1295.CrossRefGoogle Scholar
  40. Rui, Z., Qiao, Y., Qiaoli, J., Songsong, M., & Jianqiao, L. (2017). Macro-microscopic research in reideer (Rangifer tarandus) hoof suitable for efficient locomotion on complex grounds. Journal of Veterinary Research, 61, 223–229.CrossRefGoogle Scholar
  41. Sawyer, H., Lindzey, F., & McWhirter, D. (2005). Mule deer and pronghorn migration in western Wyoming. Wildlife Society Bulletin, 33(4), 1266–1273.CrossRefGoogle Scholar
  42. Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., Goto, M., Munechika, I., & Okada, N. (1997). Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature, 388, 666–670.CrossRefGoogle Scholar
  43. Skarin, A., Danell, O., Bergström, R., & Moen, J. (2010). Reindeer movement patterns in alpine summer ranges. Polar Biology, 33, 1263–1275.CrossRefGoogle Scholar
  44. Street, G. M., Rodgers, A. R., & Fryxell, J. M. (2015). Mid-day temperature variation influences seasonal habitat selection by moose. The Journal of Wildlife Management, 79(3), 505–512.CrossRefGoogle Scholar
  45. Tierson, W. C., Mattfeld, G. F., Sage, R. W., Jr., & Behrend, D. F. (1985). Seasonal movements and home ranges of white-tailed deer in the dirondacks. Journal of Wildlife Management, 49(3), 760–769.CrossRefGoogle Scholar
  46. Wattles, D. W., & DeStefano, S. (2013). Space use and movement of moose in Massachusetts: Implications for conservation of large mammals in a fragmented environment. Alces, 49, 65–81.Google Scholar
  47. Winkler, D. W., Jørgensen, C., Both, C., Houston, A. I., McNamara, J. M., Levey, D. J., Partecke, J., Fudickar, A., Kacelnik, A., Roshier, D., & Piersma, T. (2014). Cues, strategies, and outcomes: How migrating vertebrates track environmental change. Movement Ecology, 2, 10.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Wildlife, Fisheries and AquacultureMississippi State UniversityMississippi StateUSA

Section editors and affiliations

  • Mystera M. Samuelson
    • 1
  1. 1.The Institute for Marine Mammal StudiesGulfportUSA