Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Rodentia Sensory Systems

  • Kali BurkeEmail author
  • Anastasiya Kobrina
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_765-1

Synonyms

Definition

Sensory systems are the physiological modalities by which individuals engage with the world. The major systems include audition, vestibular, gustation, olfaction, touch, and vision.

Introduction

Across the order Rodentia are a variety of different mammals which use their sensory systems to interact with the world. These sensory systems vary in complexity and importance depending on the evolution and lifestyle of the animal. Rodents are diverse in both physical size and the environment in which they live. They are dependent on highly specialized and adapted sensory systems to engage with their environments and to survive.

Rodents live in wet and dry, hot and cold, aboveground and subterranean, and light and dark environments. Across these environments, they live in either solitary conditions or large social groups (Feldhamer et al. 2015). In each of these contrasting environments and climates, different sensory systems assume...

This is a preview of subscription content, log in to check access.

References

  1. Accolla, R., Bathellier, B., Petersen, C. C., & Carleton, A. (2007). Differential spatial representation of taste modalities in the rat gustatory cortex. Journal of Neuroscience, 27(6), 1396–1404.CrossRefGoogle Scholar
  2. Blocker, T. D., & Ophir, A. G. (2016). A preference to bond? Male prairie voles form pair bonds even in the presence of multiple receptive females. Animal Behaviour, 122, 89–97.CrossRefGoogle Scholar
  3. Bradbury, J. W., & Vehrencamp, S. L. (2011). Principles of animal communication (2nd ed.). Sunderland: Sinauer Associates.Google Scholar
  4. Crish, S. D., Dengler-Crish, C. M., & Catania, K. C. (2006). Central visual system of the naked mole-rat (Heterocephalus glaber). The Anatomical Record Part A Discoveries in Molecular Cellular and Evolutionary Biology, 288(2), 205–212.CrossRefGoogle Scholar
  5. Dent, M. L., Screven, L. A., & Kobrina, A. (2018). Hearing in rodents. In M. L. Dent, R. R. Fay, & A. N. Popper (Eds.), Rodent bioacoustics (pp. 71–106). Cham: Springer International Publishing.CrossRefGoogle Scholar
  6. Feldhamer, G. A., Drickamer, L. C., Vessey, S. H., Merritt, J. F., & Krajewski, C. (2015). Mammalogy: Adaptation, diversity, ecology. Baltimore: Johns Hopkins University Press.Google Scholar
  7. Ferkin, M. H., Briley, D., Ferkin, B. D., Hardaway, A., & Applebury, T. (2010). Responses of meadow voles, Microtus pennsylvanicus, to areas containing over-marks and single scent marks of two opposite-sex conspecifics. Behaviour, 148, 117–130.Google Scholar
  8. Gautam, S. H., & Verhagen, J. V. (2012). Direct behavioral evidence for retronasal olfaction in rats. PLoSONE, 7(9), e44781.CrossRefGoogle Scholar
  9. Gobrogge, K., & Wang, Z. (2016). The ties that bond: Neurochemistry of attachment in voles. Current Opinion in Neurobiology, 38, 80–88.CrossRefGoogle Scholar
  10. Hani, A. E., Mason, R. J., Nolte, D. L., & Schmidt, R. H. (1998). Flavor avoidance learning and its implications in reducing strychnine bating hazards to nontarget animals. Physiology and Behavior, 64(5), 585–589.CrossRefGoogle Scholar
  11. Hermer-Vazquez, L., Hermer-Vazquez, R., & Chapin, J. K. (2004). Somatosensation. In Wishaw, I.Q., & Kolb, B. The behavior of the laboratory rat: A handbook with tests. Oxford Scholarship Online.Google Scholar
  12. Jacobs, G. H., Fenqick, J. A., & Williams, G. A. (2001). Cone-based vision of rats for ultraviolet and visible light. Journal of Experimental Biology, 204(Pt 14), 2439–2446.PubMedGoogle Scholar
  13. Jamon, M. (2014). The development of vestibular system and related functions in mammals: Impact of gravity. Frontiers in Integrative Neuroscience, 8, 11.CrossRefGoogle Scholar
  14. Keselica, J. J., & Rosinski, R. R. (1976). Spatial perception in colliculectomized and normal golden hamsters (Mesocricetus auratus). Physiological Psychology, 4(4), 511–514.CrossRefGoogle Scholar
  15. Lilly, M. V., Lucore, E. C., & Tarvin, K. A. (2019). Eavesdropping grey squirrels infer safety from bird chatter. PLoSONE, 14(9), e0221279.CrossRefGoogle Scholar
  16. Mateo, J. M. (2010). Alarm calls elicit predator-specific physiological responses. Biology Letters, 6(5), 623–625.CrossRefGoogle Scholar
  17. Negus, V. E. (1927). The function of the epiglottis. Journal of Anatomy, 62, 1–8.PubMedPubMedCentralGoogle Scholar
  18. Parker, L. A. (2014). Conditioned flavor avoidance and conditioned gaping: Rat models of conditioned nausea. European Journal of Pharmacology, 722, 122–133.CrossRefGoogle Scholar
  19. Pfaff, C., Martin, T., & Ruf, I. (2015). Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia). Proceedings of the Royal Society B: Biological Sciences, 282(1809), 20150744.CrossRefGoogle Scholar
  20. Radziwon, K. E., June, K. M., Stolzberg, D. J., Xu-Friedman, M. A., Salvi, R. J., & Dent, M. L. (2009). Behaviorally measured audiograms and gap detection thresholds in CBA/CaJ mice. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 10, 961–969.CrossRefGoogle Scholar
  21. Shuler, M. G., Krupa, D. J., & Nicolelis, M. A. L. (2001). Bilateral integration of whisker information in the primary somatosensory cortex of rats. Journal of Neuroscience, 21(14), 5251–5261.CrossRefGoogle Scholar
  22. Thorington, R. W., Jr., Darrow, K., & Betts, A. D. (1997). Comparative myology of the forelimb of squirrels (Sciuridae). Journal of Morphology, 234(2), 155–182.CrossRefGoogle Scholar
  23. Tordoff, M. G. (2007). Taste solution preferences of C57BL/6J and 129X1/SvJ mice: Influence of age, sex, and diet. Chemical Senses, 32, 655–671.CrossRefGoogle Scholar
  24. Torregrossa, A. M., Loney, G. C., Smith, J. C., & Eckel, L. A. (2015). Examination of the perception of sweet- and bitter-like taste qualities in sucralose preferring and avoiding rats. Physiology & Behavior, 146, 96–103.CrossRefGoogle Scholar
  25. Vorhees, C. V., & Williams, M. T. (2014). Assessing spatial learning and memory in rodents. Institute for Laboratory Animal Research Journal, 55(2), 310–332.CrossRefGoogle Scholar
  26. Walls, G. L. (1934). The visual cells of the white rat. Journal of Comparative Psychology, 18(3), 363–366.CrossRefGoogle Scholar
  27. Zucker, I., Wade, G. N., & Ziegler, R. (1972). Sexual and hormonal influences on eating, taste preferences, and body weight of hamsters. Physiology & Behavior, 1, 101–111.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PsychologyUniversity at BuffaloSUNY, BuffaloUSA
  2. 2.Department of Biological SciencesNorthern Arizona UniversityFlagstaffUSA

Section editors and affiliations

  • Kenneth Leising
    • 1
  1. 1.Texas Christian UniversityForth WorthUSA