Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Predator Detection

  • Stefan FischerEmail author
  • Joachim G. Frommen
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_714-1


The chance of prey to escape predation strongly depends on its ability to detect the predator before getting attacked. In order to avoid potential lethal attacks, prey species need to be constantly vigilant. At the same time, they need to engage in other activities such as feeding and mating. This creates trade-offs between the time invested in antipredator vigilance and all other activities. Optimizing the outcome of such trade-offs requires a precise knowledge of the predator appearance in order to minimize false alarms and at the same time maximize correct identification. Predator recognition can be either inherited or learned, for instance, based on own or public information. To recognize the presence of a predator, prey animals may employ various cues, often involving different modalities such as olfactory, visual, or acoustic information. Moreover, the chances to detect a predator will further increase when several individuals are vigilant. In this chapter we will...

This is a preview of subscription content, log in to check access.


  1. Baldauf, S. A., Thünken, T., Frommen, J. G., Bakker, T. C.M., Heupel, O., & Kullmann, H. (2007). Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours. International Journal for Parasitology, 37, 61–65.Google Scholar
  2. Barber, J. R., Crooks, K. R., & Fristrup, K. M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology and Evolution, 25, 180–189.Google Scholar
  3. Barrera, J. P., Chong, L., Judy, K. N., & Blumstein, D. T. (2011). Reliability of public information: Predators provide more information about risk than conspecifics. Animal Behaviour, 81, 779–787.CrossRefGoogle Scholar
  4. Beauchamp, G. (2015). Animal vigilance: monitoring predators and competitors, Academic Press, Amsterdam.Google Scholar
  5. Breed, M. D., Guzmán-Novoa, E., & Hunt, G. J. (2004). Defensive behavior of honey bees: organization, genetics,and comparisons with other bees. Annu Rev Entomol, 49, 271–98. Google Scholar
  6. Brown, G. E., Ferrari, M. C. O., & Chivers, D. P. (2011). Learning about danger: Chemical alarm cues and threat-sensitive assessment of predation risk by fishes. In C. Brown, K. N. Laland, & J. Krause (Eds.), Fish cognition and behaviour (pp. 59–74). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  7. Caro, T. (2005). Antipredator defenses in birds and mammals. Chicago: University of Chicago Press.Google Scholar
  8. Clutton-Brock, T. H., O’Riain, M. J., Brotherton, P. N. M., Gaynor, D., Kansky, R., Griffin, A. S., & Manser, M. (1999). Selfish sentinels in cooperative mammals. Science, 284, 1640–1644.CrossRefGoogle Scholar
  9. Cronin, T. W. (2005). The visual ecology of predator-prey interactions. In P. Barbosa & I. Castellanos (Eds.), Ecology of predator-prey interactions (pp. 105–139). Oxford: Oxford University Press.Google Scholar
  10. Davey, G. C. L. (1995). Preparedness and phobias – specific evolved associations or a generalized expectancy bias. Behavioral and Brain Sciences, 18, 289–297.CrossRefGoogle Scholar
  11. Davies, N. B., Krebs, J. R., & West, S. A. (2012). An introduction to behavioural ecology. Chichester: Wiley-Blackwell.Google Scholar
  12. Dielenberg, R. A., & McGregor, I. S. (2001). Defensive behavior in rats towards predatory odors: a review. Neuroscience and Biobehavioral Reviews, 25, 597–609.Google Scholar
  13. Ferrari, M. C. O., McCormick, M. I., Meekan, M. G., Simpson, S. D., Nedelec, S. L., & Chivers, D. P. (2018). School is out on noisy reefs: The effect of boat noise on predator learning and survival of juvenile coral reef fishes. Proceedings of the Royal Society B, 285, 20180033.Google Scholar
  14. Fischer, S., Taborsky, B., Burlaud, R., Fernandez, A. A., Hess, S., Oberhummer, E., & Frommen, J. G. (2014). Animated images as a tool to study visual communication: A case study in a cooperatively breeding cichlid. Behaviour, 151, 1921–1942.CrossRefGoogle Scholar
  15. Fischer, S., Oberhummer, E., Cunha-Saraiva, F., Gerber, N., & Taborsky, B. (2017). Smell or vision? The use of different sensory modalities in predator discrimination. Behavioral Ecology and Sociobiology, 71, 143.CrossRefGoogle Scholar
  16. Flower, T. (2011). Fork-tailed drongos use deceptive mimicked alarm calls to steal food. Proceedings of the Royal Society B, 278, 1548–1555.Google Scholar
  17. Griesser, M., & Suzuki, T. N. (2017). Naive juveniles are more likely to become breeders after witnessing predator mobbing. American Naturalist, 189, 58–66.CrossRefGoogle Scholar
  18. Hale, R., Piggott, J. J., & Swearer, S. E. (2017). Describing and understanding behavioral responses to multiple stressors and multiple stimuli. Ecology and Evolution, 7, 38–47.CrossRefGoogle Scholar
  19. Hettena, A. M., Munoz, N., & Blumstein, D. T. (2014). Prey responses to predator’s sounds: A review and empirical study. Ethology, 120, 427–452.CrossRefGoogle Scholar
  20. Hettyey, A., Tóth, Z., Thonhauser, K. E., Frommen, J. G., Penn, D. J., & Van Buskirk, J. (2015). The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia, 179, 699–710.Google Scholar
  21. Hildebrand, J. A. (2009). Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series, 395, 5–20.CrossRefGoogle Scholar
  22. Howe, N. R., & Sheik, Y. M. (1975). Anthopleurine: a sea anemone alarm pheromone. Science 189, 386–8.Google Scholar
  23. Janssen, J. (2004). Lateral line sensory ecology. In G. Emde, J. Mogdans, & B. G. Kapoor (Eds.), The senses of fish. Dordrecht: Springer.Google Scholar
  24. Jill, M. M. (2010). Self-referent phenotype matching and long-term maintenance of kin recognition. Animal Behaviour, 80(5), 929–935.Google Scholar
  25. Jones, P. L., Page, R. A., & Ratcliffe, J. M. (2016). To scream or to listen? Prey detection and discrimination in animal-eating bats. In M. B. Fenton, A. N. Popper, A. D. Grinnell, & R. R. Fay (Eds.), Bat bioacoustics (pp. 93–117). New York: Springer.CrossRefGoogle Scholar
  26. Kern, J. M., Sumner, S., & Radford, A. N. (2016). Sentinel dominance status influences forager use of social information. Behavioral Ecology, 27, 1053–1060.CrossRefGoogle Scholar
  27. Kullmann, H., Thünken, T., Baldauf, S. A., Bakker, T. C. M., & Frommen, J. G. (2008). Fish odour triggers conspecific attraction behaviour in an aquatic invertebrate. Biology Letters, 4, 458–460.CrossRefGoogle Scholar
  28. Manser, M. B. (2001). The acoustic structure of suricates’ alarm calls varies with predator type and the level of response urgency. Proceedings of the Royal Society B, 268, 2315–2324.Google Scholar
  29. Marshall, J., & Johnsen, S. (2011). Camouflage in marine fish. In M. Stevens & S. Merilaita (Eds.), Animal camouflage (pp. 186–212). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  30. McGhee, K. E., Pintor, L. M., Suhr, E. L., & Bell, A. M. (2012). Maternal exposure to predation risk decreases offspring antipredator behaviour and survival in threespined stickleback. Functional Ecology, 26, 932–940.CrossRefGoogle Scholar
  31. Meise, K., Franks, D. W., & Bro-Jørgensen, J. (2018). Multiple adaptive and non-adaptive processes determine responsiveness to heterospecific alarm calls in African savannah herbivores. Proceedings of the Royal Society B, 285, 20172676.Google Scholar
  32. Morales, J., Lucas, A., & Velando, A. (2018). Maternal programming of offspring antipredator behavior in a seabird. Behavioral Ecology, 29, 479–485.CrossRefGoogle Scholar
  33. Morris-Drake, A., Kern, J. M., & Radford, A. N. (2016). Cross-modal impacts of anthropogenic noise on information use. Current Biology, 26, 911–912.CrossRefGoogle Scholar
  34. Morris-Drake, A., Bracken, A. M., Kern, J. M., & Radford, A. N. (2017). Anthropogenic noise alters dwarf mongoose responses to heterospecific alarm calls. Environmental Pollution, 223, 476–483.CrossRefGoogle Scholar
  35. Munoz, N. E., & Blumstein, D. T. (2012). Multisensory perception in uncertain environments. Behavioral Ecology, 23, 457–462.CrossRefGoogle Scholar
  36. Partan, S. R., & Marler, P. (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166, 231–245.CrossRefGoogle Scholar
  37. Pulliam, H. R. (1973). Advantages of flocking. Journal of Theoretical Biology, 38, 419–422.CrossRefGoogle Scholar
  38. Saunders, S. P., Ong, T. W. Y., & Cuthbert, F. J. (2013). Auditory and visual threat recognition in captive-reared Great Lakes piping plovers (Charadrius melodus). Applied Animal Behaviour Science, 144, 153–162.CrossRefGoogle Scholar
  39. Smith, M. E., & Belk, M. C. (2001). Risk assessment in western mosquitofish (Gambusia affinis): Do multiple cues have additive effects? Behavioral Ecology and Sociobiology, 51, 101–107.CrossRefGoogle Scholar
  40. Templeton, C. N., Zollinger, S. A., & Brumm, H. (2016). Traffic noise drowns out great tit alarm calls. Current Biology, 26, 1173–1174.CrossRefGoogle Scholar
  41. Uetz, G. W., Boyle, J., Hieber, C. S., & Wilcox, R. S. (2002). Antipredator benefits of group living in colonial web-building spiders: The ‘early warning’ effect. Animal Behaviour, 63, 445–452.CrossRefGoogle Scholar
  42. von Frisch, K. (1942). Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Zeitschrift für vergleichende Physiologie, 29, 46–145.CrossRefGoogle Scholar
  43. Will Cresswell (1994). The function of alarm calls in redshanks, Tringa totanus, Animal Behaviour, 47(3), 736–738.Google Scholar
  44. Wyatt, T. D. (2014a). Breaking the code: Illicit signalers and receivers of semiochemicals. In T. D. Wyatt (Ed.), Pheromones and animal behavior (pp. 244–259). Cambridge: Cambridge University Press.Google Scholar
  45. Wyatt, T. D. (2014b). Fight or flight: Alarm pheromones and cues. In T. D. Wyatt (Ed.), Pheromones and animal behaviour (pp. 165–172). Cambridge: Cambridge University Press.Google Scholar
  46. Yack, J. (2016). Vibrational signaling. In G. S. Pollack, A. C. Mason, A. N. Popper, & R. R. Fay (Eds.), Insect hearing (pp. 99–123). Cham: Springer International Publishing.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mammalian Behaviour and Evolution Group, Institute of Integrative BiologyUniversity of Liverpool, Leahurst CampusNestonUK
  2. 2.Division of Behavioural Ecology, Institute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland

Section editors and affiliations

  • Caroline Leuchtenberger
    • 1
  1. 1.Federal Institute FarroupilhaPanambiBrasil