Skip to main content

Predator Defense

Synonyms

Antipredator strategies

Definition

A set of traits and mechanisms by which prey avoid being detected, recognized, subjugated, or ultimately consumed by their predators.

Introduction

Most organisms are at risk from predation. For this reason, many species have evolved certain traits or strategies that confer different degrees of protection. Such traits and strategies can be physical (morphological), chemical, or behavioral and can be exhibited by both individuals and groups. As a result, predator defenses are very diverse and are widespread across the animal kingdom. However, several key strategies have evolved separately in multiple groups of animals.

In order to classify and understand these defenses, we must first understand how animals fall prey to others. The process of predation can be thought of as a sequence, beginning with the detection of the prey by a potential predator, followed by its recognition as a suitable prey item, its subjugation and, finally, its...

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Brodie, E. D. I. I. I., & Brodie, E. D., Jr. (1999). Predator-prey arms races. Bioscience, 49, 557–568.

    CrossRef  Google Scholar 

  • Brower, L. P., & Fink, L. S. (1985). A natural toxic defense system: Cardenolides in butterflies versus birds. Annals of the New York Academy of Sciences, 443, 171–188.

    CrossRef  PubMed  Google Scholar 

  • Carlson, N. V., Healy, S. D., & Templeton, C. N. (2017). A comparative study of how British tits encode predator threat in their mobbing calls. Animal Behaviour, 125, 77–92.

    CrossRef  Google Scholar 

  • Castilla, A. M., Gosá, A., Galán, P., & Pérez-Mellado, V. (1999). Green tails in lizards of the genus Podarcis: Do they influence the intensity of predation? Herpetologica, 55, 530–537.

    Google Scholar 

  • Conner, W. E. (Ed.). (2009). Tiger Moths and Woolly Bears—behaviour, ecology, and evolution of the Arctiidae. Oxford: Oxford University Press.

    Google Scholar 

  • Deban, S. M., O’Reilly, J. C., & Theimer, T. C. (1994). Mechanism of defensive inflation in the chuckwalla, Sauromalus obesus. Journal of Experimental Zoology, 270, 451–459.

    CrossRef  Google Scholar 

  • Endler, J. A. (1991). Interactions between predators and prey. In Behavioural ecology an evolutionary approach (pp. 169–196). Cambridge: Cambridge University Press.

    Google Scholar 

  • Francq, E. N. (1969). Behavioral aspects of feigned death in the opossum Didelphis marsupialis. American Midland Naturalist, 81, 556–568.

    CrossRef  Google Scholar 

  • Halperin, T., Carmel, L., & Hawlena, D. (2016). Movement correlates of lizards’ dorsal pigmentation patterns. Functional Ecology, 31, 370–376.

    CrossRef  Google Scholar 

  • Jackson, J. F., Ingram, W., & Campbell, H. W. (1976). Dorsal pigmentation pattern of snakes as an anti-predator strategy – multivariate approach. American Naturalist, 110, 1029–1053.

    CrossRef  Google Scholar 

  • Johnsen, S. (2001). Hidden in plain sight: The ecology and physiology of organismal transparency. The Biological Bulletin, 201, 301–318.

    CrossRef  PubMed  Google Scholar 

  • Magarlamov, Y. T., Melnikova, I. D., & Chernyshev, V. A. (2017). Tetrodotoxin-producing bacteria: Detection, distribution and migration of the toxin in aquatic systems. Toxins, 9, 166 (5 pages).

    CrossRef  PubMed Central  Google Scholar 

  • Pope, D. S. (2000). Testing function of fiddler crab claw waving by manipulating social context. Behavioral Ecology and Sociobiology, 47, 432–437.

    CrossRef  Google Scholar 

  • Poulton, E. B. (1890). The colours of animals: Their meaning and use. London: Kegan Paul, Trench, Trubner.

    Google Scholar 

  • Prudic, K. L., Stoehr, A. M., Wasik, B. R., & Monteiro, A. (2014). Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proceedings of the Royal Society B, 282(1798), 20141531. https://doi.org/10.1098/rspb.2014.1531.

    CrossRef  Google Scholar 

  • Riipi, M., Alatalo, R. V., Lindström, L., & Mappes, J. (2001). Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature, 413, 512–514.

    CrossRef  PubMed  Google Scholar 

  • Rojas, B., Devillechabrolle, J., & Endler, J. A. (2014). Paradox lost: Variable color-pattern geometry is associated with differences in movement in aposematic frogs. Biology Letters, 10(6), 20140193.

    CrossRef  PubMed Central  Google Scholar 

  • Rowland, H. M. (2009). From Abbott Thayer to the present day: What have we learned about the function of countershading? Philosophical Transactions of the Royal Society B, 364, 59–527.

    CrossRef  Google Scholar 

  • Saporito, R. A., Donnelly, M. A., Spande, T. F., & Garraffo, H. M. (2012). A review of chemical ecology in poison frogs. Chemoecology, 22, 159–168.

    CrossRef  Google Scholar 

  • Scherz, M. D., Daza, J. D., Köhler, J., Vences, M., & Glaw, F. (2017). Off the scale: A new species of fish-scale gecko (Squamata: Gekkonidae: Geckolepis) with exceptionally large scales. PeerJ, 5, e2955.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Shahrudin, S. (2016). Antipredator behaviour of Limnonectes blythii (Boulenger, 1920) (Anura: Dicroglossidae) from Kedah, peninsular Malaysia. International Journal of Zoology. 2016: 2816762.

    Google Scholar 

  • Skelhorn, J., Rowland, H. M., Speed, M. P., & Ruxton, G. D. (2010). Masquerade: Camouflage without crypsis. Science, 327, 51.

    CrossRef  PubMed  Google Scholar 

  • Stevens, M., & Merilaita, S. (2009). Animal camouflage: Current issues and new perspectives. Philosophical Transactions of the Royal Society B, 364, 423–427.

    CrossRef  Google Scholar 

  • Thayer, G. H. (1909). Concealing coloration in the animal kingdom. An exposition of the laws of disguise through color and pattern. In Being a summary of Abbott H. Thayer’s discoveries. New York: Macmillan.

    Google Scholar 

  • Umbers, K. D. L., De Bona, S., White, T. E., Lehtonen, J., Mappes, J., Endler, J. A. (2017). Deimatism: a neglected component of antipredator defence. Biology Letters. 13: 20160936.

    Google Scholar 

  • Valkonen, J. K., Nokelainen, O., & Mappes, J. (2011). Antipredatory function of head shape for vipers and their mimics. PLoS One, 6(7), e22272.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Warkentin, K. M. (1995). Adaptive plasticity in hatching age: A response to predation risk trade-offs. PNAS, 92, 3507–3510.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Williams, K. S., & Simon, C. (1995). The ecology, behavior, and evolution of periodical cicadas. Annual Review of Entomology, 40, 269–295.

    CrossRef  Google Scholar 

  • Zagrobelny, M., Bak, S., Olsen, C. E., & Møller, B. L. (2007). Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Insect Biochemistry and Molecular Biology, 37, 1189–1197.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibiana Rojas .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Rojas, B., Burdfield-Steel, E. (2018). Predator Defense. In: Vonk, J., Shackelford, T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_708-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47829-6_708-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47829-6

  • Online ISBN: 978-3-319-47829-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social Sciences