Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Müllerian Mimicry

  • Dirleane O. RossatoEmail author
  • Lucas A. Kaminski
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_687-1



A convergent pattern of morphological and/or behavioral traits in organisms that signal aposematism for predators.


Predators exert strong selective pressures on prey, therefore shaping their defensive strategies. According to the theory of optimal foraging, predators tend to maximize their energy absorption per unit of time. During the first step of the assessment phase of a potential prey, the predator needs to distinguish palatable and easy prey from unpalatable, dangerous or difficult to capture prey (Fig. 1). A naive predator trying the unpalatable prey (Step 1, Fig. 1). The decision to attack or not depends on the animal’s cognition through instinctual behavior (innate) and/or previous experiences (learning). These decisions must be made quickly and accurately, as mistakes can result in high costs including unpleasant experiences, injuries or even death. On the next attempt, the experienced predator starts to avoid...
This is a preview of subscription content, log in to check access.


  1. Benson, W. W. (1972). Natural selection for Müllerian mimicry in Heliconius erato in Costa Pica. Science, 176, 936–939.CrossRefGoogle Scholar
  2. Brown, K. S. (1984). Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature, 309, 707–709.CrossRefGoogle Scholar
  3. Brown, K. S., Sheppard, P. M., & Turner, J. R. G. (1974). Quaternary refugia in tropical America: Evidence from race formation in Heliconius butterflies. Proceedings of the Royal Society B, 187, 369–378.Google Scholar
  4. Crane, J. (1955). Imaginal behavior of a Trinidad butterfly, Heliconius erato hydara Heiwitson, with special reference to the social use of color. Zoologica, 40, 167–196.Google Scholar
  5. Cuthill, J. H., & Charleston, M. (2012). Phylogenetic codivergence supports coevolution of mimetic Heliconius Butterflies. PLoS One, 7, e36464.CrossRefGoogle Scholar
  6. Dawkins, R. (1976). The selfish gene. New York: Oxford University Press.Google Scholar
  7. Ehrlich, P., & Raven, P. (1964). Butterflies and plants: A study in coevolution. Evolution, 18, 586–608.CrossRefGoogle Scholar
  8. Endler, J. A. (1988). Frequency-dependent predation, crypsis and aposematic coloration. Philosophical transactions of the Royal Society of London. Series B, 319, 505–523.CrossRefGoogle Scholar
  9. Forsman, A., & Merilaita, S. (1999). Fearful symmetry: Pattern size and asymmetry affects aposematc signal efficacy. Evolutionary Ecology, 13, 131–140.CrossRefGoogle Scholar
  10. Franks, D. W., & Noble, J. (2002). The origins of mimicry ring. In R. K. Standish, M. A. Bedau, & H. A. Abbass (Eds.), Artificial life VIII: Proceeding of the eighth international conference of artificial life (pp. 186–191). Massachusetts Institute of Technology in Cambridge, Massachusetts: MIT Press.Google Scholar
  11. Holt, R. D. (1977). Predation, apparent competition, and the structure of prey communities. Theoretical Population Biology, 12, 197–229.CrossRefGoogle Scholar
  12. Ihalainen, E. (2006). Experiments on defensive mimicry: Linkages between predator behaviour and qualities of the prey. Jyväskylä: University of Jyväskylä.Google Scholar
  13. Ihalainen, E., Lindström, L., Mappes, J., & Puolakkainen, S. (2008). Can experienced birds select for Müllerian mimicry? Behavioral Ecology, 19, 362–368.CrossRefGoogle Scholar
  14. Janzen, D. H., Hallwachsa, W., & Burnsb, J. B. (2010). A tropical horde of counterfeit predator eyes. Proceedings of the National Academy of Sciences, 107, 11659–11665.CrossRefGoogle Scholar
  15. Joron, M. (2009). Mimicry & aposematic coloration. In R. T. Cardé & V. H. Resh (Eds.), Encyclopedia of insects (2nd ed., pp. 33–38). New York: Academic.CrossRefGoogle Scholar
  16. Mallet, J. (2001). Causes and consequences of a lack of coevolution in Müllerian mimicry. Evolutionary Ecology, 13, 777–806.CrossRefGoogle Scholar
  17. Mallet, J., & Gilbert, L. E., Jr. (1995). Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biological Journal of the Linnean Society, 55, 159–180.Google Scholar
  18. Marples, N. M. (1993). Do wild birds use size to distinguish palatable and unpalatable prey types? Animal Behaviour, 46, 347–354.CrossRefGoogle Scholar
  19. Müller, F. (1879). Ituna and Thyridia: A remarkable case of mimicry in butterflies. (transl. by Ralph Meldola from the original German article in Kosmos, May 1879, p. 100) Transactions of the Entomological Society of London, 1979, 20–29.Google Scholar
  20. Rossato, D. O., Kaminski, L. A., Iserhard, C. A., & Duarte, L. (2018a). More than colours: An eco-evolutionary framework for wing shape diversity in butterflies. Butterfly wing patterns and mimicry. Advances in Insect Physiology, 54, 55–84.CrossRefGoogle Scholar
  21. Rossato, D. O., Boligon, D., Fornel, R., Kronforst, M. R., Gonçalves, G. L., & Moreira, G. R. P. (2018b). Subtle variation in size and shape of the whole forewing and the red band among comimics revealed by geometric morphometric analysis in Heliconius butterflies. Ecology and Evolution, 8, 3280–3295.CrossRefGoogle Scholar
  22. Rowland, H. M., Wiley, E., Ruxton, G. D., Mappes, J., & Speed, M. P. (2010). When more is less: The fitness consequences of predators attacking more unpalatable prey when more are presented. Biology Letters, 6, 732–735.CrossRefGoogle Scholar
  23. Ruxton, G. D., Sherratt, T. N., & Speed, M. P. (2004). Avoiding attack: The evolutionary ecology of crypsis, warning signals and mimicry. New York: Oxford University Press.CrossRefGoogle Scholar
  24. Sherratt, T. N. (2008). The evolution of Müllerian mimicry. Naturwissenschaften, 95, 681.  https://doi.org/10.1007/s00114-008-0403-y.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Speed, M. P. (1993). Mullerian mimicry and the psychology of predation. Animal Behaviour, 45, 571–580.CrossRefGoogle Scholar
  26. Srygley, R. B., & Ellington, C. P. (1999). Discrimination of flying mimetic, passion-vine butterflies Heliconius. Proceedings of the Royal Society B, 266, 2137–2140.CrossRefGoogle Scholar
  27. Svádová, K., Exnerová, A., Štys, P., Landová, E., Valenta, J., Fucíková, A., & Socha, R. (2009). Role of different colours of aposematic in-sects in learning, memory and generalization of naive bird predators. Animal Behaviour, 77, 327–333.CrossRefGoogle Scholar
  28. Vane-Wright, R. I. (1976). A unified classification of mimetic resemblances. Biological Journal of the Linnean Society, 8, 25–56.CrossRefGoogle Scholar
  29. Willmott, K. R., & Mallet, J. (2004). Correlations between adult mimicry and larval host-plants in ithomiine butterflies. Proceedings of the Royal Society B, 271, S266–S269.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of EcologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Departament of ZoologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Section editors and affiliations

  • Caroline Leuchtenberger
    • 1
  1. 1.Federal Institute FarroupilhaPanambiBrasil