Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Hormones and Behavior

  • Ashutosh Kumar
  • Pavan Kumar
  • Muneeb A. Faiq
  • Vivek K. Sharma
  • Kishore Sesham
  • Maheswari Kulandhasamy
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-319-47829-6_476-2

Introduction

Hormones are secretions from the ductless glands (known as endocrine glands) and specialized cells in the specific animal organs, which circulate through blood to reach target destinations in specific parts of the body (including the brain) for action.

Modern view for the hormones is that a hormone is any substance that acts at the cellular level to initiate, stop, or modulate a cellular process, and they include all chemical messengers synthesized by the body that act by binding with high affinity to target cells within the same individual. Some scientists also consider pheromones as hormones. Pheromones are those molecules which act in a similar way as hormones – leave the body of one individual to act on another individual. The site of action can be nearby or at a distant target.

Hormones can act via paracrine, autocrine, or intracrine mechanisms. A hormone may act both locally and at distant target sites traveling through the bloodstream. To enter the brain, hormones...

This is a preview of subscription content, log in to check access

References

  1. Andreani, T. S., et al. (2015). Genetics of circadian rhythms. Sleep Medicine Clinics, 10(4), 413–421. NIH Public Access.  https://doi.org/10.1016/j.jsmc.2015.08.007.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bales, K. L., et al. (2013). Chronic intranasal oxytocin causes long-term impairments in partner preference formation in male prairie voles. Biological Psychiatry, 74(3), 180–188.  https://doi.org/10.1016/j.biopsych.2012.08.025.CrossRefPubMedGoogle Scholar
  3. Balthazart, J. (2017). Steroid metabolism in the brain: From bird watching to molecular biology, a personal journey. Hormones and Behavior, 93, 137–150. Academic Press.  https://doi.org/10.1016/J.YHBEH.2017.05.017.CrossRefPubMedGoogle Scholar
  4. Barrett, E. S., & Patisaul, H. B. (2017). Endocrine disrupting chemicals and behavior: Re-evaluating the science at a critical turning point. Hormones and Behavior. Academic Press.  https://doi.org/10.1016/J.YHBEH.2017.09.010.
  5. Bendix, M., et al. (2015). Plasma oxytocin and personality traits in psychiatric outpatients. Psychoneuroendocrinology, 57, 102–110.  https://doi.org/10.1016/j.psyneuen.2015.04.003.CrossRefPubMedGoogle Scholar
  6. Blaustein, J. D. (2004). Minireview: Neuronal steroid hormone receptors: They’re not just for hormones anymore. Endocrinology, 145(3), 1075–1081.  https://doi.org/10.1210/en.2003-1485.CrossRefPubMedGoogle Scholar
  7. Cao, J. (2014). The functional role of long non-coding RNAs and epigenetics. Biological Procedures Online, 16, 11. BioMed Central.  https://doi.org/10.1186/1480-9222-16-11.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Degerman, G., & Kihlström, J. E. (1961). Brief cyclic variations in some sexual functions of the male rabbit. Acta Physiologica Scandinavica, 51(2–3), 108–115. Blackwell Publishing Ltd.  https://doi.org/10.1111/j.1748-1716.1961.tb02119.x.CrossRefPubMedGoogle Scholar
  9. Dreher, J.-C., et al. (2007). Menstrual cycle phase modulates reward-related neural function in women. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2465–2470. National Academy of Sciences.  https://doi.org/10.1073/pnas.0605569104.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dubal, D. B., et al. (2014). Life extension factor klotho enhances cognition. Cell Reports, 7(4), 1065–1076. Elsevier.  https://doi.org/10.1016/j.celrep.2014.03.076.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eisenegger, C., et al. (2010). Prejudice and truth about the effect of testosterone on human bargaining behaviour. Nature, 463(7279), 356–359. Nature Publishing Group.  https://doi.org/10.1038/nature08711.CrossRefPubMedGoogle Scholar
  12. Fusani, L. (2017). Field techniques in hormones and behavior ☆. In Reference Module in Life Sciences. Elsevier.  https://doi.org/10.1016/B978-0-12-809633-8.01052-9.
  13. Galis, F., et al. (2010). Sexual dimorphism in the prenatal digit ratio (2D:4D). Archives of Sexual Behavior, 39(1), 57–62. Springer.  https://doi.org/10.1007/s10508-009-9485-7.CrossRefPubMedGoogle Scholar
  14. Grey, K. R., et al. (2013). Human milk cortisol is associated with infant temperament. Psychoneuroendocrinology, 38(7), 1178–1185.  https://doi.org/10.1016/j.psyneuen.2012.11.002.CrossRefPubMedGoogle Scholar
  15. Hackett, J. A., et al. (2013). Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science, 339(6118), 448–452.  https://doi.org/10.1126/science.1229277.CrossRefPubMedGoogle Scholar
  16. Hughey, J. J., & Butte, A. J. (2016). Differential phasing between circadian clocks in the brain and peripheral organs in humans. Journal of Biological Rhythms, 31(6), 588–597. SAGE Publications.  https://doi.org/10.1177/0748730416668049.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Insel, T. R. (2010). The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron, 65(6), 768–779. Cell Press.  https://doi.org/10.1016/J.NEURON.2010.03.005.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ish, H., et al. (2007). Local production of sex hormones and their modulation of hippocampal synaptic plasticity. The Neuroscientist, 13(4), 323–334.  https://doi.org/10.1177/10738584070130040601.CrossRefGoogle Scholar
  19. Jensen, P. (2013). Transgenerational epigenetic effects on animal behaviour. Progress in Biophysics and Molecular Biology, 113(3), 447–454. Pergamon.  https://doi.org/10.1016/J.PBIOMOLBIO.2013.01.001.CrossRefPubMedGoogle Scholar
  20. Kinsella, M. T., & Monk, C. (2009). Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clinical Obstetrics and Gynecology, 52(3), 425–440. NIH Public Access.  https://doi.org/10.1097/GRF.0b013e3181b52df1.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Klinesmith, J., Kasser, T., & McAndrew, F. T. (2006). Guns, testosterone, and aggression. Psychological Science, 17(7), 568–571.  https://doi.org/10.1111/j.1467-9280.2006.01745.x.CrossRefPubMedGoogle Scholar
  22. Kosfeld, M., et al. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673–676. Nature Publishing Group.  https://doi.org/10.1038/nature03701.CrossRefPubMedGoogle Scholar
  23. Kozlovsky, N., et al. (2008). The immediate early gene Arc is associated with behavioral resilience to stress exposure in an animal model of posttraumatic stress disorder. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 18(2), 107–116. Elsevier.  https://doi.org/10.1016/j.euroneuro.2007.04.009.CrossRefGoogle Scholar
  24. Kumar, A., et al. (2017a). Nerve growth factor(s) mediated hypothalamic pituitary adrenal axis dysregulation model in stress induced genesis of psychiatric disorders. Preprints.  https://doi.org/10.20944/PREPRINTS201710.0047.V2.
  25. Kumar, A., et al. (2017b). Regulatory role of NGFs in neurocognitive functions. Reviews in the Neurosciences, 28(6), 649–673.  https://doi.org/10.1515/revneuro-2016-0031.CrossRefPubMedGoogle Scholar
  26. Kumar, A., et al. (2017c). Induction – reversal modeling of psychiatric disorders by functional manipulation of habenular pathways in zebrafish. Neurology Psychiatry and Brain Research, 24, 1.  https://doi.org/10.1016/j.npbr.2016.12.003.CrossRefGoogle Scholar
  27. Lai, M.-C., & Huang, L.-T. (2011). Effects of early life stress on neuroendocrine and neurobehavior: Mechanisms and implications. Pediatrics and Neonatology, 52(3), 122–129. Elsevier.  https://doi.org/10.1016/J.PEDNEO.2011.03.008.CrossRefPubMedGoogle Scholar
  28. Lee, J. J., et al. (2015). Hormones and ethics: Understanding the biological basis of unethical conduct. Journal of Experimental Psychology: General, 144(5), 891–897.  https://doi.org/10.1037/xge0000099.CrossRefGoogle Scholar
  29. Maney, D. L. (2017). Polymorphisms in sex steroid receptors: From gene sequence to behavior. Frontiers in Neuroendocrinology, 47, 47–65. Academic Press.  https://doi.org/10.1016/J.YFRNE.2017.07.003.CrossRefPubMedGoogle Scholar
  30. Marsh, N., et al. (2017). Oxytocin-enforced norm compliance reduces xenophobic outgroup rejection. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9314–9319. National Academy of Sciences.  https://doi.org/10.1073/pnas.1705853114.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pedersen, C. A., & Prange, A. J., Jr. (1979). Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proceedings of the National Academy of Sciences of the United States of America, 76(12), 6661–6665. National Academy of Sciences. Available at: http://www.ncbi.nlm.nih.gov/pubmed/293752.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pfaff, D. W. (1997). Hormones, genes, and behavior. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14213–14216. National Academy of Sciences. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9405591.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Phillips, L. J., et al. (2006). Stress, the hippocampus and the hypothalamic-pituitary-adrenal axis: Implications for the development of psychotic disorders. The Australian and New Zealand Journal of Psychiatry, 40(9), 725–741.  https://doi.org/10.1080/j.1440-1614.2006.01877.x.CrossRefPubMedGoogle Scholar
  34. Raam, T., et al. (2017). Hippocampal oxytocin receptors are necessary for discrimination of social stimuli. Nature Communications, 8(1), 2001. Nature Publishing Group.  https://doi.org/10.1038/s41467-017-02173-0.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Revest, J.-M., et al. (2005). The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nature Neuroscience, 8(5), 664–672.  https://doi.org/10.1038/nn1441.CrossRefPubMedGoogle Scholar
  36. Rice, W. R., Friberg, U., & Gavrilets, S. (2012). Homosexuality as a consequence of epigenetically canalized sexual development. The Quarterly Review of Biology, 87(4), 343–368. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23397798.CrossRefPubMedGoogle Scholar
  37. Salma, A. (2014). Hebbian neuroplasticity versus meta-neuroplasticity and the relevance for neurosurgical innovation. World Neurosurgery, 82(5), e667–e668. Elsevier.  https://doi.org/10.1016/j.wneu.2014.06.052.CrossRefPubMedGoogle Scholar
  38. Senba, E., & Ueyama, T. (1997). Stress-induced expression of immediate early genes in the brain and peripheral organs of the rat. Neuroscience Research, 29(3), 183–207. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9436645.CrossRefPubMedGoogle Scholar
  39. Shalvi, S., & De Dreu, C. K. W. (2014). Oxytocin promotes group-serving dishonesty. Proceedings of the National Academy of Sciences of the United States of America, 111(15), 5503–5507. National Academy of Sciences.  https://doi.org/10.1073/pnas.1400724111.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Skibicka, K. P., & Dickson, S. L. (2013). Enteroendocrine hormones – central effects on behavior. Current Opinion in Pharmacology, 13(6), 977–982. Elsevier.  https://doi.org/10.1016/J.COPH.2013.09.004.CrossRefPubMedGoogle Scholar
  41. Snowdon, C. T., & Ziegler, T. E. (2015). Variation in prolactin is related to variation in sexual behavior and contact affiliation. PLoS One, 10(3), e0120650. Edited by C. Wicker-Thomas. Public Library of Science.  https://doi.org/10.1371/journal.pone.0120650.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Studer, L. H., Aylwin, A. S., & Reddon, J. R. (2005). Testosterone, sexual offense recidivism, and treatment effect among adult male sex offenders. Sexual Abuse: A Journal of Research and Treatment, 17, 171.  https://doi.org/10.1177/107906320501700207.CrossRefGoogle Scholar
  43. Tsang, A. H., Barclay, J. L., & Oster, H. (2014). Interactions between endocrine and circadian systems. Journal of Molecular Endocrinology, 52(1), R1–16. BioScientifica.  https://doi.org/10.1530/JME-13-0118.CrossRefPubMedGoogle Scholar
  44. Van Cappellen, P., et al. (2016). Effects of oxytocin administration on spirituality and emotional responses to meditation. Social Cognitive and Affective Neuroscience, 11(10), 1579–1587.  https://doi.org/10.1093/scan/nsw078. Oxford University Press.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Xu, Y., & Zheng, Y. (2016). The relationship between digit ratio (2D:4D) and sexual orientation in men from China. Archives of Sexual Behavior, 45(3), 735–741. Springer US.  https://doi.org/10.1007/s10508-015-0535-z.CrossRefPubMedGoogle Scholar
  46. Xu, X., et al. (2012). Modular genetic control of sexually dimorphic behaviors. Cell, 148(3), 596–607. Elsevier.  https://doi.org/10.1016/j.cell.2011.12.018.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhong, S., et al. (2012). U-shaped relation between plasma oxytocin levels and behavior in the trust game. PLoS One, 7(12), e51095. Public Library of Science.  https://doi.org/10.1371/journal.pone.0051095.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhou, L., & Foster, J. A. (2015). Psychobiotics and the gut-brain axis: In the pursuit of happiness. Neuropsychiatric Disease and Treatment, 11, 715–723. Dove Press.  https://doi.org/10.2147/NDT.S61997.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ashutosh Kumar
    • 1
    • 2
  • Pavan Kumar
    • 2
  • Muneeb A. Faiq
    • 6
  • Vivek K. Sharma
    • 3
    • 5
  • Kishore Sesham
    • 2
  • Maheswari Kulandhasamy
    • 4
  1. 1.Department of AnatomyAll India Institute of Medical Sciences (AIIMS)PatnaIndia
  2. 2.Department of AnatomyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
  3. 3.Department of PhysiologyGovernment Institute of Medical Sciences (GIMS)Greater NoidaIndia
  4. 4.Department of Biochemistry,Maulana Azad Medical College (MAMC)New DelhiIndia
  5. 5.Department of PhysiologyJawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)PondicherryIndia
  6. 6.Dr. Rajendra Prasad Centre for Ophthalmic SciencesAll India Institute of Medical Sciences (AIIMS)New DelhiIndia

Section editors and affiliations

  • David Hanbury
    • 1
  1. 1.Averett UniversityDanvilleUSA