Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Assortative Mating

  • Alice Baniel
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_288-1

Synonyms

Definition

Assortative mating is defined as a pattern of nonrandom mating, where there is a correlation (positive or negative) between male and female genotypes and/or phenotypes across mating pairs. Positive assortative mating (also called homogamy) implies a tendency to mate with genetically or phenotypically similar individuals. Conversely, negative assortative mating (also called heterogamy or disassortative mating) implies a tendency to mate with genotypically or phenotypically dissimilar traits. In the speciation literature, assortative mating is considered as a mechanism that drives reproductive isolation within a diverging population or between distinct species.

Introduction

An important focus in the field of sexual selection over the past decade has been to understand how and why animals choose their mates. In some cases, mate choice has been found to...

This is a preview of subscription content, log in to check access.

References

  1. Arnqvist, G. (2011). Assortative mating by fitness and sexually antagonistic genetic variation. Evolution, 65(7), 2111–2116.CrossRefGoogle Scholar
  2. Bateson, P. P. G. (1983). Optimal outbreeding. In P. P. G. Bateson (Ed.), Mate choice (pp. 257–277). Cambridge, MA: Cambridge University Press.Google Scholar
  3. Bereczkei, T., Gyuris, P., & Weisfeld, G. E. (2004). Sexual imprinting in human mate choice. Proceedings of the Royal Society of London, Series B: Biological Sciences, 271(1544), 1129–1134.CrossRefGoogle Scholar
  4. Bovet, J., Barthes, J., Durand, V., Raymond, M., & Alvergne, A. (2012). Men’s preference for women’s facial features: Testing homogamy and the paternity uncertainty hypothesis. PLoS ONE, 7(11), e49791.CrossRefGoogle Scholar
  5. Clayton, N. S. (1990). Assortative mating in zebra finch subspecies, Taeniopygia guttata guttata and T. g. castanotis. Philosophical Transactions: Biological Sciences, 330(1258), 351–370.CrossRefGoogle Scholar
  6. Crespi, B. J. (1989). Causes of assortative mating in arthropods. Animal Behaviour, 38(6), 980–1000.CrossRefGoogle Scholar
  7. Crow, J. F. J., & Felsenstein, J. (1968). The effect of assortative mating on the genetic composition of a population. Eugenics Quarterly, 15(December 2013), 85–97.CrossRefGoogle Scholar
  8. Dieckmann, U., & Doebeli, M. O. (1999). On the origin of species by sympatric speciation. Nature, 400(22), 354–357.CrossRefGoogle Scholar
  9. Egger, B., Obermüller, B., Eigner, E., Sturmbauer, C., & Sefc, K. M. (2008). Assortative mating preferences between colour morphs of the endemic Lake Tanganyika cichlid genus Tropheus. Hydrobiologia, 615, 37–48.CrossRefGoogle Scholar
  10. Epinat, G., & Lenormand, T. (2009). The evolution of assortative mating and selfing with in- and outbreeding depression. Evolution, 63, 2047–2060.CrossRefGoogle Scholar
  11. Feder, J. L., Opp, S. B., Wlazlo, B., Reynolds, K., Go, W., & Spisak, S. (1994). Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proceedings of the National Academy of Sciences of the United States of America, 91(17), 7990–7994.CrossRefGoogle Scholar
  12. Groman, J. D., & Pellmyr, O. (2000). Rapid evolution and specialization following host colonization in a yucca moth. Journal of Evolutionary Biology, 13(2), 223–236.CrossRefGoogle Scholar
  13. Harari, A., Handler, A., & Landolt, P. (1999). Size-assortative mating, male choice and female choice in the curculionid beetle Diaprepes abbreviatus. Animal Behaviour, 58(6), 1191–1200.CrossRefGoogle Scholar
  14. Hauber, M. E., & Sherman, P. W. (2001). Self-referent phenotype matching: Theoretical considerations and empirical evidence. TRENDS in Neurosciences, 24(10), 609–616.CrossRefGoogle Scholar
  15. Havlicek, J., & Roberts, C. (2009). MHC-correlated mate choice in humans: A review. Psychoneuroendocrinology, 34, 497–512.CrossRefGoogle Scholar
  16. Ihle, M., Kempenaers, B., & Forstmeier, W. (2015). Fitness benefits of mate choice for compatibility in a socially monogamous species. PLoS Biology, 13(9), 1–21.CrossRefGoogle Scholar
  17. Jiang, Y., Bolnick, D. I., & Kirkpatrick, M. (2013). Assortative mating in animals. The American Naturalist, 181(6), E125–E138.CrossRefGoogle Scholar
  18. Kirkpatrick, M., & Ravigné, V. (2002). Speciation by natural and sexual selection: Models and experiments. The American Naturalist, 159, S22–S35.CrossRefGoogle Scholar
  19. Kondrashov, A. S., & Shpak, M. (1998). On the origin of species by means of assortative mating. Proceedings of the Royal Society of London B – Biological Sciences, 265, 2273–2278.CrossRefGoogle Scholar
  20. Laubu, C., Dechaume-Moncharmont, F.-X., Motreuil, S., & Schweitzer, C. (2016). Mismatched partners that achieve postpairing behavioral similarity improve their reproductive success. Science Advances, 2(3), e1501013.CrossRefGoogle Scholar
  21. MacDougall, A. K., & Montgomerie, R. (2003). Assortative mating by carotenoid-based plumage colour: A quality indicator in American goldfinches, Carduelis tristis. Naturwissenschaften, 90(10), 464–467.CrossRefGoogle Scholar
  22. Malausa, T., Bethenod, M. T., Bontemps, A., Bourguet, D., Cornuet, J. M., & Ponsard, S. (2005). Assortative mating in sympatric host races of the European corn borer. Science, 308(5719), 258–260.CrossRefGoogle Scholar
  23. Marcinkowska, U. M., Moore, F. R., & Rantala, M. J. (2013). An experimental test of the Westermarck effect: Sex differences in inbreeding avoidance. Behavioral Ecology, 24(4), 842–845.CrossRefGoogle Scholar
  24. McLain, D. K., & Boromisa, R. D. (1987). Male choice, fighting ability, assortative mating and the intensity of sexual selection in the milkweed longhorn beetle, Tetraopes tetraophthalmus (Coleoptera, Cerambycidae). Behavioral Ecology and Sociobiology, 20(4), 239–246.CrossRefGoogle Scholar
  25. Melo, M. C., Salazar, C., Jiggins, C. D., & Linares, M. (2009). Assortative mating preferences among hybrids offers a route to hybrid speciation. Evolution, 63(6), 1660–1665.CrossRefGoogle Scholar
  26. Otto, S. P., Servedio, M. R., & Nuismer, S. L. (2008). Frequency-dependent selection and the evolution of assortative mating. Genetics, 179(4), 2091–2112.CrossRefGoogle Scholar
  27. Piertney, S. B., & Oliver, M. K. (2006). The evolutionary ecology of the major histocompatibility complex. Heredity, 96(1), 7–21.CrossRefGoogle Scholar
  28. Rushton, J. P. (1989). Genetic similarity theory, human altruism, and group selection. Behavioral and Brain Sciences, 12(3), 503–517.CrossRefGoogle Scholar
  29. Štěrbová, Z., & Valentová, J. (2012). Influence of homogamy, complementarity, and sexual imprinting on mate choice. Anthropologie, L/1(January 2013), 47–59.Google Scholar
  30. Thiessen, D., & Gregg, B. (1980). Human assortative mating and genetic equilibrium: An evolutionary perspective. Ethology and Sociobiology, 1(2), 111–140.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Advanced Study in ToulouseToulouseFrance

Section editors and affiliations

  • Constance Dubuc
    • 1
  1. 1.University of CambridgeCambridgeUK