Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Social Buffering

  • L. Tamara KumpanEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_2064-1

Definition

Social buffering

The improved recovery from aversive experiences when a social mammal is grouped with others of the same species (Davitz and Mason 1955).

Introduction

Primates encounter a multitude of stressors in the wild, ranging from constant predation risk to food competition and aggressive interactions with conspecifics. In mammals, stress activates the hypothalamic-pituitary-adrenal (HPA) axis, which in turn stimulates the adrenal cortex and eventually results in the release of the glucocorticoid hormone cortisol, or corticosterone. In the immediate context, cortisol is adaptive because it motivates the “fight-or-flight” response on which survival depends and enables individuals to act quickly to escape life-threatening situations. However, although it is adaptive in the short-term, cortisol is extremely damaging to the brain and body when released consistently over long-term periods. Cortisol has been linked to decreases in immune response as well as cognitive ability...

Keywords

Stress Cortisol Sociality Oxytocin Primates 
This is a preview of subscription content, log in to check access.

References

  1. Calhoun, C. D., Helms, S. W., Heilbron, N., Rudolph, K. D., Hastings, P. D., & Prinstein, M. J. (2014). Relational victimization, friendship, and adolescents’ hypothalamic–pituitary–adrenal axis responses to an in vivo social stressor. Development and Psychopathology, 26, 605–618.CrossRefGoogle Scholar
  2. Coe, C. L., Mendoza, S. P., Smotherman, W. P., & Levine, S. (1978). Mother-infant attachment in the squirrel monkey: Adrenal response to separation. Behavioral Biology, 22, 256–263.CrossRefGoogle Scholar
  3. Davitz, J. R., & Mason, D. J. (1955). Socially facilitated reduction of a fear response in rats. Journal of Comparative and Physiological Psychology, 48, 149–151.CrossRefGoogle Scholar
  4. Donaldson, Z. R., & Young, L. J. (2008). Oxytocin, vasopressin, and the neurogenetics of sociality. Science, 322, 900–904.CrossRefGoogle Scholar
  5. Ebner, K., Bosch, O. J., Krömer, S. A., Singewald, N., & Neumann, I. D. (2005). Release of oxytocin in the rat central amygdala modulates stress-coping behavior and the release of excitatory amino acids. Neuropsychopharmacology, 30, 223–230.CrossRefGoogle Scholar
  6. Evans, O., & Steptoe, A. (2001). Social support at work, heart rate, and cortisol: a self-monitoring study. Journal of Occupational Health Psychology, 6, 361–370.CrossRefGoogle Scholar
  7. Gallo, L. C., Smith, T. W., & Kircher, J. C. (2000). Cardiovascular and electrodermal responses to support and provocation: Interpersonal methods in the study of psychophysiological reactivity. Psychophysiology, 37, 289–301.CrossRefGoogle Scholar
  8. Gunnar, M. R., & Hostinar, C. E. (2015). The social buffering of the hypothalamic–pituitary–adrenocortical axis in humans: Developmental and experiential determinants. Social Neuroscience, 10, 479–488.CrossRefGoogle Scholar
  9. Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54, 1389–1398.CrossRefGoogle Scholar
  10. Hennessy, M. B., Mendoza, S. P., Mason, W. A., & Moberg, G. P. (1995). Endocrine sensitivity to novelty in squirrel monkeys and titi monkeys: species differences in characteristic modes of responding to the environment. Physiology & Behavior, 57, 331–338.CrossRefGoogle Scholar
  11. Hennessy, M. B., Maken, D. S., & Graves, F. C. (2000). Consequences of the presence of the mother or unfamiliar adult female on cortisol, ACTH, testosterone and behavioral responses of periadolescent guinea pigs during exposure to novelty. Psychoneuroendocrinology, 25, 619–632.CrossRefGoogle Scholar
  12. Hoffman, K. A., Mendoza, S. P., Hennessy, M. B., & Mason, W. A. (1995). Responses of infant titi monkeys, Callicebus moloch, to removal of one or both parents: evidence for paternal attachment. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 28, 399–407.CrossRefGoogle Scholar
  13. Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the HPA axis: A review of animal models and human studies across development. Psychological Bulletin, 140, 256–282.CrossRefGoogle Scholar
  14. Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., … Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659–1662.Google Scholar
  15. Lyons, D. M., Martel, F. L., Levine, S., Risch, N. J., & Schatzberg, A. F. (1999). Postnatal experiences and genetic effects on squirrel monkey social affinities and emotional distress. Hormones and Behavior, 36, 266–275.CrossRefGoogle Scholar
  16. McEwen, B. S., & Seeman, T. (1999). Protective and damaging effects of mediators of stress: elaborating and testing the concepts of allostasis and allostatic load. Annals of the New York Academy of Sciences, 896, 30–47.CrossRefGoogle Scholar
  17. Neumann, I. D. (2002). Involvement of the brain oxytocin system in stress coping: interactions with the hypothalamo-pituitary-adrenal axis. In Progress in brain research (Vol. 139, pp. 147–162). Amsterdam, Netherlands: Elsevier Science B. V.Google Scholar
  18. Neumann, I. D., Johnstone, H. A., Hatzinger, M., Liebsch, G., Shipston, M., Russell, J. A., … Douglas, A. J. (1998). Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes. The Journal of Physiology, 508, 289–300.Google Scholar
  19. Neumann, I. D., Krömer, S. A., Toschi, N., & Ebner, K. (2000). Brain oxytocin inhibits the (re) activity of the hypothalamo–pituitary–adrenal axis in male rats: involvement of hypothalamic and limbic brain regions. Regulatory Peptides, 96(1–2), 31–38.CrossRefGoogle Scholar
  20. Parker, K. J., Buckmaster, C. L., Schatzberg, A. F., & Lyons, D. M. (2004). Prospective investigation of stress inoculation in young monkeys. Archives of General Psychiatry, 61, 933–941.CrossRefGoogle Scholar
  21. Rosenblum, L. A., Smith, E. L. P., Altemus, M., Scharf, B. A., Owens, M. J., Nemeroff, C. B., … Coplan, J. D. (2002). Differing concentrations of corticotropin-releasing factor and oxytocin in the cerebrospinal fluid of bonnet and pigtail macaques. Psychoneuroendocrinology, 27, 651–660.Google Scholar
  22. Saito, A., & Nakamura, K. (2011). Oxytocin changes primate paternal tolerance to offspring in food transfer. Journal of Comparative Physiology A, 197, 329–337.CrossRefGoogle Scholar
  23. Seltzer, L. J., Ziegler, T. E., & Pollak, S. D. (2010). Social vocalizations can release oxytocin in humans. Proceedings of the Royal Society B: Biological Sciences, 277, 2661–2666.CrossRefGoogle Scholar
  24. Smith, T. E., McGreer-Whitworth, B., & French, J. A. (1998). Close proximity of the heterosexual partner reduces the physiological and behavioral consequences of novel-cage housing in black tufted-ear marmosets (Callithrix kuhli). Hormones and Behavior, 34, 211–222.CrossRefGoogle Scholar
  25. Smotherman, W. P., Brown, C. P., & Levine, S. (1977). Maternal responsiveness following differential pup treatment and mother-pup interactions. Hormones and Behavior, 8, 242–253.CrossRefGoogle Scholar
  26. Suomi, S. J. (1991). Early stress and adult emotional reactivity in rhesus monkeys. The Childhood Environment and Adult Disease, 156, 171–183.Google Scholar
  27. Winslow, J. T., Noble, P. L., Lyons, C. K., Sterk, S. M., & Insel, T. R. (2003). Rearing effects on cerebrospinal fluid oxytocin concentration and social buffering in rhesus monkeys. Neuropsychopharmacology, 28, 910.CrossRefGoogle Scholar
  28. Young, C., Majolo, B., Heistermann, M., Schülke, O., & Ostner, J. (2014). Responses to social and environmental stress are attenuated by strong male bonds in wild macaques. Proceedings of the National Academy of Sciences, 111, 18195–18200.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.AnthropologyUniversity of Toronto ScarboroughTorontoCanada

Section editors and affiliations

  • Jennifer Vonk
    • 1
  1. 1.Oakland UniversityRochesterUSA