Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Intraparietal Sulcus

  • Vishwajit Ravindra DeshmukhEmail author
  • S. Nagaraj
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1785-1

Introduction

The ability of an organism to integrate sensorimotor functions and visuospatial processing confers major survivability advantages, because they allow organisms to adjust their behavior in response to the environment. The intraparietal sulcus is the location for many of these functions in humans. The primary somatosensory area is located posterior to the central sulcus and is guarded more posteriorly by a postcentral sulcus. Dorsal to postcentral sulcus, the intraparietal sulcus (IPS) divides the parietal lobe into superior and inferior parietal lobules consisting of areas 5 and 7, which are considered to be the sensory association areas (Fig. 1). Turner in 1866 described the intraparietal sulcus to be located within the parietal lobe and having an ascending and horizontal course. He also mentioned that IPS could be recognized from the 6th month of intrauterine life (Turner 1866). Cunningham in 1892 studied the configuration of intraparietal sulcus and its relation to that...
This is a preview of subscription content, log in to check access.

References

  1. Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Annual Review of Neuroscience, 25, 189–220.CrossRefGoogle Scholar
  2. Binkofski, F., Buccino, G., Stephan, K. M., Rizzolatti, G., Seitz, R. J., & Freund, H. J. (1999). A parieto-premotor network for object manipulation: Evidence from neuroimaging. Experimental Brain Research, 128, 210–213.CrossRefGoogle Scholar
  3. Choi, H. J., Zilles, K., Mohlberg, H., Schleicher, A., Fink, G. R., Armstrong, E., et al. (2006). Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. The Journal of Comparative Neurology, 495, 53–69.CrossRefGoogle Scholar
  4. Cunningham, D. J. (1892). Contribution to the surface anatomy of the cerebral hemispheres by D. J. C., with a chapter upon cranio-cerebral topography by Victory Horsley. Dublin: Royal Irish Academy.Google Scholar
  5. Duhamel, J.–. R., Colby, C. L., & Goldberg, M. E. (1998). Ventral intraparietal area of the macaque: Convergent visual and somatic response properties. Journal of Neurophysiology, 79, 126–136.CrossRefGoogle Scholar
  6. Frey, S. H., Vinton, D., Norlund, R., & Grafton, S. T. (2005). Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Cognitive Brain Research, 23, 397–405.CrossRefGoogle Scholar
  7. Janssen, P., Srivastava, S., Ombelet, S., & Orban, G. A. (2008). Coding of shape and position in macaque lateral intraparietal area. The Journal of Neuroscience, 28, 6679–6690.CrossRefGoogle Scholar
  8. Molko, N., Cachia, A., Riviere, D., Mangin, J. F., Bruandet, M., Le Bihan, D., Cohen, L., & Dehaene, S. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron, 40(4), 847–858.CrossRefGoogle Scholar
  9. Molko, N., Cachia, A., Riviere, D., Mangin, J. F., Bruandet, M., LeBihan, D., Cohen, L., & Dehaene, S. (2004). Brain anatomy in Turner syndrome: Evidence for impaired social and spatial-numerical networks. Cerebral Cortex, 14, 840–850.CrossRefGoogle Scholar
  10. Mulliken, G. H., Musallam, S., & Andersen, R. A. (2008). Forward estimation of movement state in posterior parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 105, 8170–8177.CrossRefGoogle Scholar
  11. Murata, A., Gallese, V., Luppino, G., Kaseda, M., & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. Journal of Neurophysiology, 83, 2580–2601.CrossRefGoogle Scholar
  12. Muri, R. M., Gaymard, B., Rivaud, S., Vermersch, A., Hess, C. W., & Pierrot-Deseilligny, C. (2000). Hemispheric asymmetry in cortical control of memory-guided saccades. A transcranial magnetic stimulation study. Neuropsychologia, 38, 1105–1111.CrossRefGoogle Scholar
  13. Ono, M., Kubik, S., & Abernathey, C. D. (1990). Atlas of the cerebral sulci. Stuttgart: Thieme.Google Scholar
  14. Pierrot-Deseilligny, C., Rivaud, S., Penet, C., & Rigolet, M. H. (1987). Latencies of visually guided saccades in unilateral hemispheric cerebral lesions. Annals of Neurology, 21, 138–148.CrossRefGoogle Scholar
  15. Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage, 39, 417–42210.CrossRefGoogle Scholar
  16. Schall, J. D., Morel, A., King, D. J., & Bullier, J. (1995). Topography of visual cortex connections with frontal eye field in macaque: Convergence and segregation of processing streams. The Journal of Neuroscience, 15, 4464–4487.CrossRefGoogle Scholar
  17. Scheperjans, F., Hermann, K., Eickhoff, S. B., Amunts, K., Schleicher, A., & Zilles, K. (2008). Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cerebral Cortex, 18(4), 846–867.CrossRefGoogle Scholar
  18. Shikata, E., McNamara, A., Sprenger, A., Hamzei, F., Glauche, V., Büchel, C., & Binkofski, F. (2008). Localization of human intraparietal areas AIP, CIP, and LIP using surface orientation and saccadic eye movement tasks. Human Brain Mapping, 29, 411–421.CrossRefGoogle Scholar
  19. Turner, W. (1866). The convolutions of the human cerebrum topographically considered. Edinburgh: Maclachlan & Stewart.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of AnatomyAll India Institute of Medical SciencesNagpurIndia
  2. 2.JipmerKaraikalIndia

Section editors and affiliations

  • Joseph Boomer
    • 1
  1. 1.Missouri Southern State UniversityJoplinUSA