Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

String Pulling

  • Ivo JacobsEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1505-1


Retrieving an out-of-reach object by pulling a string attached to it.


During a cold Swedish winter, a raven watches a fisherman cut a small hole in a frozen lake. He drops in a baited fishing line attached to a stick to secure it over the hole. After he leaves, the raven flies down and examines the situation. Although she cannot see deep down the dark waters, she takes the line in her beak, pulls it, and steps on the loop. Repeating this sequence several times, she eventually reaches the end and eats the bait. Other ravens observe how she got her easy catch and make their own attempts with the numerous ice-fishing holes in the country’s largest lake. By the end of the winter, local fishermen have stopped ice fishing because they nearly always return home empty-handed due to the ravens’ efficient pilfering (Larsson 1958).

These ravens exhibited spontaneous string pulling: they retrieved out-of-reach food (bait and fish) by pulling a string (fishing line) attached...

This is a preview of subscription content, log in to check access.


  1. Alem, S., Perry, C. J., Zhu, X., Loukola, O. J., Ingraham, T., Søvik, E., & Chittka, L. (2016). Associative mechanisms allow for social learning and cultural transmission of string pulling in an insect. PLoS Biology, 14, e1002564.  https://doi.org/10.1371/journal.pbio.1002564.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altevogt, R. (1954). Über das “schöpfen” einiger vogelarten. Behaviour, 6, 147–152.  https://doi.org/10.1163/156853954x00086.CrossRefGoogle Scholar
  3. Bolwig, N. (1962). Observations on the mental and manipulative abilities of a captive baboon (Papio doguera). Behaviour, 22, 24–40.  https://doi.org/10.1163/156853963x00293.CrossRefGoogle Scholar
  4. Bossema, I. (1979). Jays and oaks: An eco-ethological study of a symbiosis. Behaviour, 70, 1–117.  https://doi.org/10.1163/156853979x00016.CrossRefGoogle Scholar
  5. Chevalier-Skolnikoff, S. (1983). Sensorimotor development in orang-utans and other primates. Journal of Human Evolution, 12, 545–561.  https://doi.org/10.1016/S0047-2484(83)80034-7.CrossRefGoogle Scholar
  6. Cole, E. F., Cram, D. L., & Quinn, J. L. (2011). Individual variation in spontaneous problem-solving performance among wild great tits. Animal Behaviour, 81, 491–498.  https://doi.org/10.1016/j.anbehav.2010.11.025.CrossRefGoogle Scholar
  7. Cole, E., Morand-Ferron, J., Hinks, A., & Quinn, J. (2012). Cognitive ability influences reproductive life history variation in the wild. Current Biology, 22, 1808–1812.  https://doi.org/10.1016/j.cub.2012.07.051.CrossRefPubMedGoogle Scholar
  8. Deaner, R. O., van Schaik, C. P., & Johnson, V. (2006). Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evolutionary Psychology, 4, 149–196.  https://doi.org/10.1177/147470490600400114.CrossRefGoogle Scholar
  9. Dickinson, J. C. (1969). A string-pulling tufted titmouse. The Auk, 86, 559.  https://doi.org/10.2307/4083422.CrossRefGoogle Scholar
  10. Dücker, G., & Rensch, B. (1977). The solution of patterned string problems by birds. Behaviour, 62, 164–173.  https://doi.org/10.1163/156853977x00081.CrossRefGoogle Scholar
  11. Ewer, R. F. (1971). The biology and behaviour of a free-living population of black rats (Rattus rattus). Animal Behaviour Monographs, 4, 125–174.  https://doi.org/10.1016/s0066-1856(71)80002-x.CrossRefGoogle Scholar
  12. Harris, D. G., & Meyer, M. E. (1971). The relationship between visual acuity and performance on patterned string problems by infrahuman primates. Psychonomic Science, 22, 160.  https://doi.org/10.3758/bf03332546.CrossRefGoogle Scholar
  13. Heinrich, B. (1995). An experimental investigation of insight in common ravens (Corvus corax). The Auk, 112, 994–1003.  https://doi.org/10.2307/4089030.CrossRefGoogle Scholar
  14. Huber, L., & Gajdon, G. K. (2006). Technical intelligence in animals: The kea model. Animal Cognition, 9, 295–305.  https://doi.org/10.1007/s10071-006-0033-8.CrossRefPubMedGoogle Scholar
  15. Jacobs, I. (2017). On the origins of physical cognition in corvids. Lund University Cognitive Studies, 167.Google Scholar
  16. Jacobs, I. F., & Osvath, M. (2015). The string-pulling paradigm in comparative psychology. Journal of Comparative Psychology, 129, 89–120.  https://doi.org/10.1037/a0038746.CrossRefPubMedGoogle Scholar
  17. Jolly, A. (1964). Prosimians’ manipulation of simple object problems. Animal Behaviour, 12, 560–570.  https://doi.org/10.1016/0003-3472(64)90080-6.CrossRefGoogle Scholar
  18. Klüver, H. (1961). Behavior mechanisms in monkeys. Chicago: University Chicago Press.Google Scholar
  19. Krasheninnikova, A. (2013). Patterned-string tasks: Relation between fine motor skills and visual-spatial abilities in parrots. PLoS One, 8, e85499.  https://doi.org/10.1371/journal.pone.0085499.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Laidre, M. E. (2008). Spontaneous performance of wild baboons on three novel food-access puzzles. Animal Cognition, 11, 223–230.  https://doi.org/10.1007/s10071-007-0104-5.CrossRefPubMedGoogle Scholar
  21. Larsson, E. (1958). Fiskande kråkor och korpar. Fauna och Flora, 53, 92–94.Google Scholar
  22. MacLean, E. L., Matthews, L. J., Hare, B. A., Nunn, C. L., Anderson, R. C., Aureli, F., …, & Wobber, V. (2012). How does cognition evolve? Phylogenetic comparative psychology. Animal Cognition, 15, 223–238.  https://doi.org/10.1007/s10071-011-0448-8.CrossRefGoogle Scholar
  23. Mason, W. A., & Harlow, H. F. (1961). The effect of age and previous training on patterned strings performance of rhesus monkeys. Journal of Comparative and Physiological Psychology, 54, 704–709.  https://doi.org/10.1037/h0044686.CrossRefPubMedGoogle Scholar
  24. Osthaus, B., Lea, S. E. G., & Slater, A. M. (2005). Dogs (Canis lupus familiaris) fail to show understanding of means-end connections in a string-pulling task. Animal Cognition, 8, 37–47.  https://doi.org/10.1007/s10071-004-0230-2.CrossRefPubMedGoogle Scholar
  25. Pfuhl, G. (2012). Two strings to choose from: Do ravens pull the easier one? Animal Cognition, 15, 549–557.  https://doi.org/10.1007/s10071-012-0483-0.CrossRefPubMedGoogle Scholar
  26. Povinelli, D. J. (2000). Folk physics for apes: The chimpanzee’s theory of how the world works. New York: Oxford University Press.Google Scholar
  27. Redshaw, M. (1978). Cognitive developments in human and gorilla infants. Journal of Human Evolution, 7, 133–141.  https://doi.org/10.1016/s0047-2484(78)80005-0.CrossRefGoogle Scholar
  28. Schuck-Paim, C., Borsari, A., & Ottoni, E. B. (2009). Means to an end: Neotropical parrots manage to pull strings to meet their goals. Animal Cognition, 12, 287–301.  https://doi.org/10.1007/s10071-008-0190-z.CrossRefPubMedGoogle Scholar
  29. Shettleworth, S. J. (2012). Do animals have insight, and what is insight anyway? Canadian Journal of Experimental Psychology, 66, 217–226.  https://doi.org/10.1037/a0030674.CrossRefPubMedGoogle Scholar
  30. Werdenich, D., & Huber, L. (2006). A case of quick problem solving in birds: String pulling in keas, Nestor notabilis. Animal Behaviour, 71, 855–863.  https://doi.org/10.1016/j.anbehav.2005.06.018.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cognitive ScienceLund UniversityLundSweden

Section editors and affiliations

  • Dawson Clary
    • 1
  1. 1.University of ManitobaWinnipegCanada