Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Bipedalism

  • Daniel SchmittEmail author
  • Laura Gruss
  • Angel Zeininger
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1456-1

Definition

A type of walking and running gait in which the two hind limbs support the entire body weight. Bipedalism involves an erect (nonsprawling) posture and a striding (sequenced between right and left) footfall pattern. Bipedalism is used by birds, fast running reptiles, primates, and, in its obligate form, humans and our fossil hominin ancestors.

Bipedalism: An Unusual Locomotor Form

In George Orwell’s Animal Farm, the revolutionary animals who overthrew their human masters famously wrote out a sign that said “Four legs good, two legs bad.” They had identified the singular defining character that separated them from their oppressors. They were right: bipedalism defines our species and the large group of fossil human ancestors that we call hominins.

Defining bipedalism seems like an easy task at first. Humans (and birds) use two legs for walking (a gait in which there is always at least one foot on the ground and footfalls alternate between right and left sides) and running...

Keywords

Locomotion Morphology Gait Hominid Ontogeny Fossil record Adaptation 
This is a preview of subscription content, log in to check access.

References

  1. Aiello, L., & Dean, C. (2002). An introduction to human evolutionary anatomy. London: Elsevier.Google Scholar
  2. Bertram, J. (Ed.). (2016). Understanding mammalian locomotion: Concepts and applications. New York: Wiley-Blackwell.Google Scholar
  3. Bertsch, C., Unger, H., Winkelmann, W., & Rosenbaum, D. (2004). Evaluation of early walking patterns from plantar pressure distribution measurements. First year results of 42 children. Gait & Posture, 19(3), 235–242.CrossRefGoogle Scholar
  4. Cavagna, G. A., Heglund, N. C., & Taylor, C. R. (1977). Mechanical work in terrestrial locomotion: Two basic mechanisms for minimizing energy expenditure. American Journal of Physiology, 233(5), R243–R261.PubMedGoogle Scholar
  5. Demes, B. (2011). Three-dimensional kinematics of capuchin monkey bipedalism. American Journal of Physical Anthropology, 145(1), 147–155.CrossRefGoogle Scholar
  6. Demes, B., & O'Neill, M. C. (2013). Ground reaction forces and center of mass mechanics of bipedal capuchin monkeys: Implications for the evolution of human bipedalism. American Journal of Physical Anthropology, 150(1), 76–86.CrossRefGoogle Scholar
  7. Fleagle, J. G. (2013). Primate adaptation and evolution. San Diego: Elsevier Academic Press.Google Scholar
  8. Griffin, N. L., Miller, C. E., Schmitt, D., & D’Août, K. (2015). Understanding the evolution of the windlass mechanism of the human foot from comparative anatomy: Insights, obstacles, and future directions. American Journal of Physical Anthropology, 156(1), 1–10.CrossRefGoogle Scholar
  9. Gruss, L. T., & Schmitt, D. (2015). The evolution of the human pelvis: Changing adaptations to bipedalism, obstetrics and thermoregulation. Philosophical Transactions of the Royal Society B, 370, 20140063.CrossRefGoogle Scholar
  10. Gruss, L. T., Gruss, R., & Schmitt, D. (2017). Pelvic breadth and locomotor kinematics in human evolution. The Anatomical Record, 300(4), 739–751.CrossRefGoogle Scholar
  11. Hatala, K. G., Dingwall, H. L., Wunderlich, R. E., & Richmond, B. G. (2013). Variation in foot strike patterns during running among habitually barefoot populations. PLoS One, 8(1), e52548.CrossRefGoogle Scholar
  12. Holowka, N. B., & Lieberman, D. E. (2018). Rethinking the evolution of the human foot: Insights from experimental research. Journal of Experimental Biology, 221(17), jeb174425.CrossRefGoogle Scholar
  13. Inman, V. T., Ralston, H. J., & Todd, F. (1981). Human walking. Baltimore: Williams and Wilkins.Google Scholar
  14. Kimura, T. (1996). Centre of gravity of the body during the ontogeny of chimpanzee bipedal walking. Folia Primatologica, 66(1-4), 126–136.CrossRefGoogle Scholar
  15. Lovejoy, C. O., Suwa, G., Simpson, S. W., Matternes, J. H., & White, T. D. (2009a). The great divides: Ardipithecus ramidus reveals the postcrania of our last common ancestors with African apes. Science, 326(5949), 100–106.PubMedGoogle Scholar
  16. Lovejoy, C. O., Suwa, G., Spurlock, L., Asfaw, B., & White, T. D. (2009b). The pelvis and femur of Ardipithecus ramidus: The emergence of upright walking. Science, 326(5949), 71–71e6.CrossRefGoogle Scholar
  17. Mummolo, C., Mangialardi, L., & Kim, J. H. (2013). Quantifying dynamic characteristics of human walking for comprehensive gait cycle. Journal of Biomechanical Engineering, 135(9), 091006.CrossRefGoogle Scholar
  18. Muybridge, E. (1955). The human figure in motion. Mineola: Dover.Google Scholar
  19. Myklebust, B. M. (1990). A review of myotatic reflexes and the development of motor control and gait in infants and children: A special communication. Physical Therapy, 70(3), 188–203.CrossRefGoogle Scholar
  20. O’Neill, M. C., Demes, B., Thompson, N. E., & Umberger, B. R. (2018). Three-dimensional kinematics and the origin of the hominin walking stride. Journal of the Royal Society Interface, 15(145), 20180205.CrossRefGoogle Scholar
  21. Queen, R. M., Sparling, T. L., & Schmitt, D. (2016). Hip, knee, and ankle osteoarthritis negatively affects mechanical energy exchange. Clinical Orthopaedics and Related Research, 474(9), 2055–2063.CrossRefGoogle Scholar
  22. Rak, Y. (1991). Lucy's pelvic anatomy: Its role in bipedal gait. Journal of Human Evolution, 20(4), 283–290.CrossRefGoogle Scholar
  23. Schmitt, D. (2003). Insights into the evolution of human bipedalism from experimental studies of humans and other primates. Journal of Experimental Biology, 206(9), 1437–1448.CrossRefGoogle Scholar
  24. Schmitt, D. (2010). Primate locomotor evolution: biomechanical studies of primate locomotion and their implications for understanding primate neuroethology. In Primate neuroethology (pp. 10–30). New York: Oxford University Press.Google Scholar
  25. Schmitt, D., & Larson, S. G. (1995). Heel contact as a function of substrate type and speed in primates. American Journal of Physical Anthropology, 96, 39–50.CrossRefGoogle Scholar
  26. Sockol, M. D., Raichlen, D. A., & Pontzer, H. (2007). Chimpanzee locomotor energetics and the origin of human bipedalism. Proceedings of the National Academy of Sciences, 104(30), 12265–12269.CrossRefGoogle Scholar
  27. Stern, J. T., Jr. (1975). Before bipedality. Yearbook of Physical Anthropology, 19, 59–68.Google Scholar
  28. Stern, J. T., Jr., & Susman, R. L. (1983). The locomotor anatomy of Australopithecus afarensis. American Journal of Physical Anthropology, 60(3), 279–317.CrossRefGoogle Scholar
  29. Sutherland, D. H., Olshen, R., Cooper, L., & Woo, S. L. (1980). The development of mature gait. Journal of Bone and Joint Surgery, 62(3), 336–353.CrossRefGoogle Scholar
  30. Tardieu, C., & Trinkaus, E. (1994). Early ontogeny of the human femoral bicondylar angle. American Journal of Physical Anthropology, 95(2), 183–195.CrossRefGoogle Scholar
  31. Wall-Scheffler, C. M., & Myers, M. J. (2017). The biomechanical and energetic advantages of a mediolaterally wide pelvis in women. The Anatomical Record, 300(4), 764–775.CrossRefGoogle Scholar
  32. Wunderlich, R. E., & Schaum, J. C. (2007). Kinematics of bipedalism in Propithecus verreauxi. Journal of Zoology, 272(2), 165–175.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Evolutionary AnthropologyDuke UniversityDurhamUSA
  2. 2.Department of BiologyRadford UniversityRadfordUSA

Section editors and affiliations

  • Khalil Iskarous
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA