Skip to main content

Quadrupedal

  • Living reference work entry
  • First Online:
Encyclopedia of Animal Cognition and Behavior

Synonyms

Quadrupedalism

Definition

Movement using a combination of four limbs.

Quadrupedal locomotion encapsulates any form of progression in which four limbs support and propel the body. Quadrupedal movement represents the basal condition for all tetrapods and as such remains the most commonly utilized form of locomotion (see Fig. 1 and Granatosky 2018 for data on mammals). Interestingly, the origins of quadrupedal locomotion appear to predate the invasion onto land by tetrapods. Experimental studies on living sarcopterygians (i.e., lungfish and coelacanths) demonstrate that the neuromuscular patterns and functional subdivisions of the “limbs” required for effective quadrupedal locomotion were likely present in fully aquatic tetrapod ancestors prior to the invasion onto land (Aiello et al. 2014; Décamps et al. 2017; Fricke and Hissmann 1992).

Fig. 1
figure 1

The percentages of locomotor behaviors observed for extant mammals. (Adapted from Granatosky (2018))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aiello, B. R., King, H. M., & Hale, M. E. (2014). Functional subdivision of fin protractor and retractor muscles underlies pelvic fin walking in the African lungfish (Protopterus annectens). Journal of Experimental Biology. https://doi.org/10.1242/jeb.105262.

    Article  Google Scholar 

  • Alexander, R. M. (2003). Principles of animal locomotion. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Biewener, A. A., & Taylor, C. R. (1986). Bone strain: A determinant of gait and speed. Journal of Experimental Biology, 123(1), 383–400.

    PubMed  Google Scholar 

  • Brisswalter, J., & Mottet, D. (1996). Energy cost and stride duration variability at preferred transition gait speed between walking and running. Canadian Journal of Applied Physiology, 21(6), 471–480.

    Article  Google Scholar 

  • Cartmill, M., Lemelin, P., & Schmitt, D. (2002). Support polygons and symmetrical gaits in mammals. Zoological Journal of the Linnean Society, 136(3), 401–420.

    Article  Google Scholar 

  • Cavagna, G. A., Heglund, N. C., & Taylor, C. R. (1977). Mechanical work in terrestrial locomotion: Two basic mechanisms for minimizing energy expenditure. American Journal of Physiology, 233(5), 243–261.

    Google Scholar 

  • Décamps, T., Herrel, A., Ballesta, L., Holon, F., Rauby, T., Gentil, Y., … Charrassin, J.-B. (2017). The third dimension: a novel set-up for filming coelacanths in their natural environment. Methods in Ecology and Evolution, 8(3), 322–328.

    Article  Google Scholar 

  • Diedrich, F. J., & Warren, W. H. (1995). Why change gaits? Dynamics of the walk-run transition. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 183–202.

    PubMed  Google Scholar 

  • Farley, C., & Taylor, C. (1991). A mechanical trigger for the trot-gallop transition in horses. Science, 253(5017), 306–308.

    Article  Google Scholar 

  • Fricke, H., & Hissmann, K. (1992). Locomotion, fin coordination and body form of the living coelacanth Latimeria chalumnae. Environmental Biology of Fishes, 34(4), 329–356.

    Article  Google Scholar 

  • Granatosky, M. C. (2018). A review of locomotor diversity in mammals with analyses exploring the influence of substrate-use, body mass, and intermembral index in primates. Journal of Zoology, 306(4), 207–216.

    Article  Google Scholar 

  • Granatosky, M. C., Tripp, C. H., Fabre, A.-C., & Schmitt, D. (2016). Patterns of quadrupedal locomotion in a vertical clinging and leaping primate (Propithecus coquereli) with implications for understanding the functional demands of primate quadrupedal locomotion. American Journal of Physical Anthropology, 160(4), 644–652.

    Article  Google Scholar 

  • Granatosky, M. C., Bryce, C. M., Hanna, J. B., Fitzsimons, A., Laird, M. F., Stilson, K., … Ross, C. F. (2018). Inter-stride variability triggers gait transitions in mammals and birds. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2018.1766.

    Article  Google Scholar 

  • Griffin, T. M., Kram, R., Wickler, S. J., & Hoyt, D. F. (2004). Biomechanical and energetic determinants of the walk–trot transition in horses. Journal of Experimental Biology, 207(24), 4215–4223.

    Article  Google Scholar 

  • Hildebrand, M. (1959). Motions of the running cheetah and horse. Journal of Mammalogy, 40(4), 481–495.

    Article  Google Scholar 

  • Hildebrand, M. (1967). Symmetrical gaits of primates. American Journal of Physical Anthropology, 26(2), 119–130.

    Article  Google Scholar 

  • Hildebrand, M. (1976). Analysis of tetrapod gaits: General considerations and symmetrical gaits. In R. M. Herman, S. Grillner, P. S. G. Stein, & D. G. Stuart (Eds.), Neural control of locomotion (pp. 203–236). Boston: Springer.

    Chapter  Google Scholar 

  • Hoyt, D. F., & Taylor, C. R. (1981). Gait and the energetics of locomotion in horses. Nature, 292(5820), 239–240.

    Article  Google Scholar 

  • Iriarte-Díaz, J., Bozinovic, F., & Vásquez, R. A. (2006). What explains the trot–gallop transition in small mammals? Journal of Experimental Biology, 209(20), 4061–4066.

    Article  Google Scholar 

  • Jordan, K., Challis, J. H., & Newell, K. M. (2007). Walking speed influences on gait cycle variability. Gait & Posture, 26(1), 128–134.

    Article  Google Scholar 

  • Lemelin, P., & Cartmill, M. (2010). The effect of substrate size on the locomotion and gait patterns of the kinkajou (Potos flavus). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 313(3), 157–168.

    Google Scholar 

  • Muybridge, E. (1887). Animals in motion. New York: Dover.

    Google Scholar 

  • O’Connor, S. M., Xu, H. Z., & Kuo, A. D. (2012). Energetic cost of walking with increased step variability. Gait & Posture, 36(1), 102–107.

    Article  Google Scholar 

  • Reilly, S. M., McElroy, E. J., Odum, R. A., & Hornyak, V. A. (2006). Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion. Proceedings of the Royal Society of London B: Biological Sciences, 273(1593), 1563–1568.

    Article  Google Scholar 

  • Renous, S., Gasc, J.-P., Bels, V. L., & Wicker, R. (2002). Asymmetrical gaits of juvenile Crocodylus johnstoni, galloping Australian crocodiles. Journal of Zoology, 256(3), 311–325.

    Article  Google Scholar 

  • Ross, C. F., Blob, R. W., Carrier, D. R., Daley, M. A., Deban, S. M., Demes, B., … Vanhooydonck, B. (2013). The evolution of locomotor rhythmicity in tetrapods. Evolution, 67(4), 1209–1217.

    Article  Google Scholar 

  • Shapiro, L. J., & Raichlen, D. A. (2005). Lateral sequence walking in infant Papio cynocephalus: Implications for the evolution of diagonal sequence walking in primates. American Journal of Physical Anthropology, 126(2), 205–213.

    Article  Google Scholar 

  • Zug, G. R. (1974). Crocodilian galloping: An unique gait for reptiles. Copeia, 1974(2), 550–552.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Granatosky .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Granatosky, M.C. (2019). Quadrupedal. In: Vonk, J., Shackelford, T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_1442-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47829-6_1442-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47829-6

  • Online ISBN: 978-3-319-47829-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics