Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Quadrupedal

  • Michael C. GranatoskyEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1442-1

Synonyms

Definition

Movement using a combination of four limbs.

Quadrupedal locomotion encapsulates any form of progression in which four limbs support and propel the body. Quadrupedal movement represents the basal condition for all tetrapods and as such remains the most commonly utilized form of locomotion (see Fig. 1 and Granatosky 2018 for data on mammals). Interestingly, the origins of quadrupedal locomotion appear to predate the invasion onto land by tetrapods. Experimental studies on living sarcopterygians (i.e., lungfish and coelacanths) demonstrate that the neuromuscular patterns and functional subdivisions of the “limbs” required for effective quadrupedal locomotion were likely present in fully aquatic tetrapod ancestors prior to the invasion onto land (Aiello et al. 2014; Décamps et al. 2017; Fricke and Hissmann 1992).
This is a preview of subscription content, log in to check access.

References

  1. Aiello, B. R., King, H. M., & Hale, M. E. (2014). Functional subdivision of fin protractor and retractor muscles underlies pelvic fin walking in the African lungfish (Protopterus annectens). Journal of Experimental Biology.  https://doi.org/10.1242/jeb.105262.CrossRefGoogle Scholar
  2. Alexander, R. M. (2003). Principles of animal locomotion. Princeton: Princeton University Press.CrossRefGoogle Scholar
  3. Biewener, A. A., & Taylor, C. R. (1986). Bone strain: A determinant of gait and speed. Journal of Experimental Biology, 123(1), 383–400.PubMedGoogle Scholar
  4. Brisswalter, J., & Mottet, D. (1996). Energy cost and stride duration variability at preferred transition gait speed between walking and running. Canadian Journal of Applied Physiology, 21(6), 471–480.CrossRefGoogle Scholar
  5. Cartmill, M., Lemelin, P., & Schmitt, D. (2002). Support polygons and symmetrical gaits in mammals. Zoological Journal of the Linnean Society, 136(3), 401–420.CrossRefGoogle Scholar
  6. Cavagna, G. A., Heglund, N. C., & Taylor, C. R. (1977). Mechanical work in terrestrial locomotion: Two basic mechanisms for minimizing energy expenditure. American Journal of Physiology, 233(5), 243–261.Google Scholar
  7. Décamps, T., Herrel, A., Ballesta, L., Holon, F., Rauby, T., Gentil, Y., … Charrassin, J.-B. (2017). The third dimension: a novel set-up for filming coelacanths in their natural environment. Methods in Ecology and Evolution, 8(3), 322–328.CrossRefGoogle Scholar
  8. Diedrich, F. J., & Warren, W. H. (1995). Why change gaits? Dynamics of the walk-run transition. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 183–202.PubMedGoogle Scholar
  9. Farley, C., & Taylor, C. (1991). A mechanical trigger for the trot-gallop transition in horses. Science, 253(5017), 306–308.CrossRefGoogle Scholar
  10. Fricke, H., & Hissmann, K. (1992). Locomotion, fin coordination and body form of the living coelacanth Latimeria chalumnae. Environmental Biology of Fishes, 34(4), 329–356.CrossRefGoogle Scholar
  11. Granatosky, M. C. (2018). A review of locomotor diversity in mammals with analyses exploring the influence of substrate-use, body mass, and intermembral index in primates. Journal of Zoology, 306(4), 207–216.CrossRefGoogle Scholar
  12. Granatosky, M. C., Tripp, C. H., Fabre, A.-C., & Schmitt, D. (2016). Patterns of quadrupedal locomotion in a vertical clinging and leaping primate (Propithecus coquereli) with implications for understanding the functional demands of primate quadrupedal locomotion. American Journal of Physical Anthropology, 160(4), 644–652.CrossRefGoogle Scholar
  13. Granatosky, M. C., Bryce, C. M., Hanna, J. B., Fitzsimons, A., Laird, M. F., Stilson, K., … Ross, C. F. (2018). Inter-stride variability triggers gait transitions in mammals and birds. Proceedings of the Royal Society B: Biological Sciences.  https://doi.org/10.1098/rspb.2018.1766.CrossRefGoogle Scholar
  14. Griffin, T. M., Kram, R., Wickler, S. J., & Hoyt, D. F. (2004). Biomechanical and energetic determinants of the walk–trot transition in horses. Journal of Experimental Biology, 207(24), 4215–4223.CrossRefGoogle Scholar
  15. Hildebrand, M. (1959). Motions of the running cheetah and horse. Journal of Mammalogy, 40(4), 481–495.CrossRefGoogle Scholar
  16. Hildebrand, M. (1967). Symmetrical gaits of primates. American Journal of Physical Anthropology, 26(2), 119–130.CrossRefGoogle Scholar
  17. Hildebrand, M. (1976). Analysis of tetrapod gaits: General considerations and symmetrical gaits. In R. M. Herman, S. Grillner, P. S. G. Stein, & D. G. Stuart (Eds.), Neural control of locomotion (pp. 203–236). Boston: Springer.CrossRefGoogle Scholar
  18. Hoyt, D. F., & Taylor, C. R. (1981). Gait and the energetics of locomotion in horses. Nature, 292(5820), 239–240.CrossRefGoogle Scholar
  19. Iriarte-Díaz, J., Bozinovic, F., & Vásquez, R. A. (2006). What explains the trot–gallop transition in small mammals? Journal of Experimental Biology, 209(20), 4061–4066.CrossRefGoogle Scholar
  20. Jordan, K., Challis, J. H., & Newell, K. M. (2007). Walking speed influences on gait cycle variability. Gait & Posture, 26(1), 128–134.CrossRefGoogle Scholar
  21. Lemelin, P., & Cartmill, M. (2010). The effect of substrate size on the locomotion and gait patterns of the kinkajou (Potos flavus). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 313(3), 157–168.Google Scholar
  22. Muybridge, E. (1887). Animals in motion. New York: Dover.Google Scholar
  23. O’Connor, S. M., Xu, H. Z., & Kuo, A. D. (2012). Energetic cost of walking with increased step variability. Gait & Posture, 36(1), 102–107.CrossRefGoogle Scholar
  24. Reilly, S. M., McElroy, E. J., Odum, R. A., & Hornyak, V. A. (2006). Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion. Proceedings of the Royal Society of London B: Biological Sciences, 273(1593), 1563–1568.CrossRefGoogle Scholar
  25. Renous, S., Gasc, J.-P., Bels, V. L., & Wicker, R. (2002). Asymmetrical gaits of juvenile Crocodylus johnstoni, galloping Australian crocodiles. Journal of Zoology, 256(3), 311–325.CrossRefGoogle Scholar
  26. Ross, C. F., Blob, R. W., Carrier, D. R., Daley, M. A., Deban, S. M., Demes, B., … Vanhooydonck, B. (2013). The evolution of locomotor rhythmicity in tetrapods. Evolution, 67(4), 1209–1217.CrossRefGoogle Scholar
  27. Shapiro, L. J., & Raichlen, D. A. (2005). Lateral sequence walking in infant Papio cynocephalus: Implications for the evolution of diagonal sequence walking in primates. American Journal of Physical Anthropology, 126(2), 205–213.CrossRefGoogle Scholar
  28. Zug, G. R. (1974). Crocodilian galloping: An unique gait for reptiles. Copeia, 1974(2), 550–552.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUSA

Section editors and affiliations

  • Khalil Iskarous
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA