Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Testudines Cognition

  • Anna WilkinsonEmail author
  • Ewen Glass
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1430-1

Reptiles were long considered to be unintelligent beings, with scientists going so far as to suggest that their cognitive abilities were fundamentally different from that of mammals and birds (e.g., Day et al. 1999). However, recent research has revealed an impressive suite of cognitive abilities in this group (e.g., Kis et al. 2015; Siviter et al. 2017; reviewed by Matsubara et al. 2017). Despite this, the body of work in this area remains small and the group is vastly understudied when compared to other vertebrate classes. This entry will provide a brief review of the current state of knowledge in the field of cognition in testudines.

Today’s extant testudines (also known as chelonia) are made up of turtles, tortoises, and terrapins. The group comprises of 327 species (van Dijk et al. 2014) and is characterized by a bony shell which encases the body. Chelonia are particularly informative in the study of the evolution of cognitive abilities as phylogenetic analyses place them as a...

This is a preview of subscription content, log in to check access.


  1. Anderson, J. R., Myowa-Yamakoshi, M., & Matsuzawa, T. (2004). Contagious yawning in chimpanzees. Proceedings of the Royal Society of London B: Biological Sciences, 271(Suppl 6), S468–S470.Google Scholar
  2. Burghardt, G. M. (1977). Learning processes in reptiles. Biology of the Reptilia, 7(7), 555–681.Google Scholar
  3. Davis, K. M., & Burghardt, G. M. (2007). Training and long-term memory of a novel food acquisition task in a turtle (Pseudemys nelsoni). Behavioural Processes, 75(2), 225–230.CrossRefGoogle Scholar
  4. Davis, K. M., & Burghardt, G. M. (2011). Turtles (Pseudemys nelsoni) learn about visual cues indicating food from experienced turtles. Journal of Comparative Psychology, 125(4), 404.CrossRefGoogle Scholar
  5. Davis, K. M., & Burghardt, G. M. (2012). Long-term retention of visual tasks by two species of emydid turtles, Pseudemys nelsoni and Trachemys scripta. Journal of Comparative Psychology, 126(3), 213.CrossRefGoogle Scholar
  6. Day, L. B., Crews, D., & Wilczynski, W. (1999). Spatial and reversal learning in congeneric lizards with different foraging strategies. Animal Behaviour, 57, 393–407.CrossRefGoogle Scholar
  7. Glavaschi, A., & Beaumont, E. S. (2014). The escape behavior of wild Greek tortoises Testudo graeca with an emphasis on geometrical shape discrimination. Basic and Applied Herpetology, 28, 21–33.Google Scholar
  8. John, E. A., Soldati, F., Burman, O. H., Wilkinson, A., & Pike, T. W. (2016). Plant ecology meets animal cognition: Impacts of animal memory on seed dispersal. Plant Ecology, 217(11), 1441–1456.CrossRefGoogle Scholar
  9. Kis, A., Huber, L., & Wilkinson, A. (2015). Social learning by imitation in a reptile (Pogona vitticeps). Animal Cognition, 18(1), 325–331.CrossRefGoogle Scholar
  10. Laland, K. N. (2004). Social learning strategies. Learning & Behavior, 32(1), 4–14.CrossRefGoogle Scholar
  11. López, J., Gómez, Y., Rodríguez, F., Broglio, C., Vargas, J., & Salas, C. (2001). Spatial learning in turtles. Animal Cognition, 4(1), 49–59.CrossRefGoogle Scholar
  12. López, J. C., Vargas, J. P., Gómez, Y., & Salas, C. (2003). Spatial and non-spatial learning in turtles: The role of medial cortex. Behavioural Brain Research, 143(2), 109–120.CrossRefGoogle Scholar
  13. Matsubara, S., Deeming, D. C., & Wilkinson, A. (2017). Cold-blooded cognition: New directions in reptile cognition. Current Opinion in Behavioral Sciences, 16, 126–130.CrossRefGoogle Scholar
  14. Moszuti, S. A., Wilkinson, A., & Burman, O. H. (2017). Response to novelty as an indicator of reptile welfare. Applied Animal Behaviour Science, 193, 98.CrossRefGoogle Scholar
  15. Mueller-Paul, J., Wilkinson, A., Hall, G., & Huber, L. (2012). Radial-arm-maze behavior of the red-footed tortoise (Geochelone carbonaria). Journal of Comparative Psychology, 126(3), 305.CrossRefGoogle Scholar
  16. Mueller-Paul, J., Wilkinson, A., Aust, U., Steurer, M., Hall, G., & Huber, L. (2014). Touchscreen performance and knowledge transfer in the red-footed tortoise (Chelonoidis carbonaria). Behavioural Processes, 106, 187–192.CrossRefGoogle Scholar
  17. Naumann, R. K., Ondracek, J. M., Reiter, S., Shein-Idelson, M., Tosches, M. A., Yamawaki, T. M., & Laurent, G. (2015). The reptilian brain. Current Biology, 25(8), R317–R321.CrossRefGoogle Scholar
  18. Pellitteri-Rosa, D., Sacchi, R., Galeotti, P., Marchesi, M., & Fasola, M. (2010). Do Hermann’s tortoises (Testudo hermanni) discriminate colors? An experiment with natural and artificial stimuli. Italian Journal of Zoology, 77(4), 481–491.CrossRefGoogle Scholar
  19. Roth, T. C., & Krochmal, A. R. (2015). The role of age-specific learning and experience for turtles navigating a changing landscape. Current Biology, 25(3), 333–337.CrossRefGoogle Scholar
  20. Roth, T. C., & Krochmal, A. R. (2016). Pharmacological evidence is consistent with a prominent role of spatial memory in complex navigation. Proceedings of the Royal Society of London B: Biological Sciences, 283(1824), 20152548.CrossRefGoogle Scholar
  21. Shaffer, H. B., Minx, P., Warren, D. E., Shedlock, A. M., Thomson, R. C., Valenzuela, N., … & Borchert, G. M. (2013). The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biology, 14(3), R28.CrossRefGoogle Scholar
  22. Siviter, H., Deeming, D. C., van Giezen, M. F. T., & Wilkinson, A. (2017). Incubation environment impacts the social cognition of adult lizards. Royal Society Open Science, 4(11), 170742.CrossRefGoogle Scholar
  23. Soldati, F., Burman, O. H., John, E. A., Pike, T. W., & Wilkinson, A. (2017). Long-term memory of relative reward values. Biology Letters, 13(2), 20160853.CrossRefGoogle Scholar
  24. Van Dijk, P. P., Iverson, J. B. Rhodin, A. J., Shaffer, H. B., & Bour, R. (2014). Turtles of the world, 7th edition: Annotated checklist of taxonomy, synonymy, distribution with maps, and conservation status (Chelonian research monographs, No. 5, pp. 329–479).Google Scholar
  25. Wilkinson, A., & Huber, L. (2012). Cold-blooded cognition: Reptilian cognitive abilities. The Oxford handbook of comparative evolutionary psychology (pp. 129–143). Oxford University PressGoogle Scholar
  26. Wilkinson, A., Chan, H. M., & Hall, G. (2007). Spatial learning and memory in the tortoise (Geochelone carbonaria). Journal of Comparative Psychology, 121(4), 412.CrossRefGoogle Scholar
  27. Wilkinson, A., Kuenstner, K., Mueller, J., & Huber, L. (2010a). Social learning in a non-social reptile (Geochelone carbonaria). Biology Letters, 6, 614, rsbl20100092.CrossRefGoogle Scholar
  28. Wilkinson, A., Mandl, I., Bugnyar, T., & Huber, L. (2010b). Gaze following in the red-footed tortoise (Geochelone carbonaria). Animal Cognition, 13(5), 765–769.CrossRefGoogle Scholar
  29. Wilkinson, A., Sebanz, N., Mandl, I., & Huber, L. (2011). No evidence of contagious yawning in the red-footed tortoise Geochelone carbonaria. Current Zoology, 57(4), 477–484.CrossRefGoogle Scholar
  30. Wilkinson, A., Mueller-Paul, J., & Huber, L. (2013). Picture–object recognition in the tortoise Chelonoidis carbonaria. Animal Cognition, 16(1), 99–107.CrossRefGoogle Scholar
  31. Yoon, J. M., & Tennie, C. (2010). Contagious yawning: A reflection of empathy, mimicry, or contagion? Animal Behaviour, 79(5), e1–e3.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Life SciencesUniversity of LincolnLincolnUK
  2. 2.Wildlife Research CenterKyoto UniversityKyotoJapan
  3. 3.Lincoln School of Film & MediaUniversity of LincolnLincolnUK

Section editors and affiliations

  • Joseph Boomer
    • 1
  1. 1.University at BuffaloBuffaloUSA