Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Spatial Orientation

  • Victoria D. ChamizoEmail author
  • Teresa Rodrigo
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1416-1
  • 61 Downloads

Synonyms

Definition

Spatial orientation refers to the ability of organisms to navigate. It is essential for their survival.

Background

While navigating, we become familiar with an environment and acquire knowledge about it, thereby extracting information from it and storing this information in our memory so that we can recall it later for a variety of purposes (Ekstrom et al. 2018). Examples concerning rodents and humans will be presented since there is an important parallelism between them when dealing with spatial tasks. However, most of the examples will focus on how males and females differ when solving these tasks – on something that has recently been referred to as “qualitative” sex differences – thus counteracting the unjustified practice of ignoring females for so many years in psychological and biomedical research (for a review see Beery and Zucker 2011). To understand the sexually dimorphic...

This is a preview of subscription content, log in to check access.

References

  1. Beery, A. K., & Zucker, I. (2011). Sex bias in neuroscience and biomedical research. Neuroscience & Biobehavioral Reviews, 35, 565–572.CrossRefGoogle Scholar
  2. Cahill, L. (2006). Why sex matters in neuroscience. Nature Reviews Neuroscience, 7, 477–484.CrossRefGoogle Scholar
  3. Clottes, J. (2008). La prehistoria explicada a los jóvenes. Barcelona: Paidós (Translation of the French original La Préhistoire expliquée à mes petits enfants of 2002. Paris: Éditions du Seuil.).Google Scholar
  4. Ekstrom, A. D., Spiers, H. J., Bohbot, V. D., & Rosenbaum, R. S. (2018). Human spatial navigation. Princeton: Princeton University Press.CrossRefGoogle Scholar
  5. Fernández Martínez, V. M. (2007). Prehistoria. El largo camino de la humanidad [Prehistory. The long road of humanity]. Madrid: Alianza Editorial.Google Scholar
  6. Gaulin, S. J. C., Fitzgerald, R. W., & Wartell, M. S. (1989). Sex differences in spatial ability and activity in two vole species. Journal of Comparative Psychology, 104, 88–93.CrossRefGoogle Scholar
  7. Halpern, D. F. (2012). Sex differences in cognitive abilities (4th ed.). New York: Psychology Press.Google Scholar
  8. Jones, C. M., Braithwaite, V. A., & Healy, S. D. (2003). The evolution of sex differences in spatial ability. Behavioral Neuroscience, 117, 403–411.CrossRefGoogle Scholar
  9. Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9, 156–184.CrossRefGoogle Scholar
  10. Kimura, D. (2000). Sex and cognition. Cambridge, MA: MIT Press.Google Scholar
  11. Lauer, J. E., Udelson, H. B., Jeon, S. O., & Lourenco, S. F. (2015). An early sex difference in the relation between mental rotation and object preference. Frontiers in Psychology, 6, 558.CrossRefGoogle Scholar
  12. Mackintosh, N. J. (2011). IQ and human intelligence (2nd ed.). New York: Oxford University Press.Google Scholar
  13. Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, R. S., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97, 4398–4403.CrossRefGoogle Scholar
  14. McCarthy, M. M. (2016). Multifaceted origins of sex differences in the brain. Philosophical Transactions of the Royal Society B, 371, 20150106.CrossRefGoogle Scholar
  15. Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants. A sex difference. Psychological Science, 19, 1063–1066.CrossRefGoogle Scholar
  16. Morris, R. G. M., Garrud, P., Rawlins, J. N. P., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.CrossRefGoogle Scholar
  17. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Claredon Press.Google Scholar
  18. Pacheco-Cobos, L., Rosetti, M., Cuatianquiz, C., & Hudson, R. (2010). Sex differences in mushroom gathering: Men expend more energy to obtain equivalent benefits. Evolution and Human Behavior, 31, 289–297.CrossRefGoogle Scholar
  19. Pearce, J., Roberts, A. D. L., & Good, M. (1998). Hippocampal lesions disrupt a cognitive map but not vector encoding. Nature, 996, 75–77.CrossRefGoogle Scholar
  20. Rodríguez, C. A., Torres, A. A., Mackintosh, N. J., & Chamizo, V. D. (2010). Sex differences in the strategies used by rats to solve a navigation task. Journal of Experimental Psychology: Animal Behavior Processes, 36, 395–401.PubMedGoogle Scholar
  21. Rodríguez, C. A., Chamizo, V. D., & Mackintosh, N. J. (2011). Overshadowing and blocking between landmark learning and shape learning: The importance of sex differences. Learning & Behavior, 39, 324–335.CrossRefGoogle Scholar
  22. Rodríguez, C. A., Chamizo, V. D., & Mackintosh, N. J. (2013). Do hormonal changes that appear at the onset of puberty determine the strategies used by female rats when solving a navigation task? Hormones and Behavior, 64, 122–135.CrossRefGoogle Scholar
  23. Roof, R. L., Zhang, Q., Glasier, M. M., & Stein, D. G. (1993). Gender-specific impairment on Morris water maze task after entorhinal cortex lesion. Behavioural Brain Research, 57, 47–51.CrossRefGoogle Scholar
  24. Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research, 6, 351–360.CrossRefGoogle Scholar
  25. Silverman, I., & Eals, M. (1992). Sex differences in spatial abilities: Evolutionary theory and data. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 531–549). New York: Oxford Press.Google Scholar
  26. Vashro, L., & Cashdan, E. (2015). Spatial cognition, mobility, and reproductive success in northwestern Namibia. Evolution and Human Behavior, 36, 123–129.CrossRefGoogle Scholar
  27. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.CrossRefGoogle Scholar
  28. Ward, S. L., Newcombe, N., & Overton, W. F. (1986). Turn left at the church, or three miles north: A study of direction giving and sex differences. Environment and Behavior, 18, 192–213.CrossRefGoogle Scholar
  29. West, G. L., Konishi, K., Diarra, M., Benady-Chorney, J., Drisdelle, B. L., Dahmani, L., Sodums, D. J., Lepore, F., Jolicoeur, P., & Bohbot, V. D. (2018). Impact of video games on plasticity of the hippocampus. Molecular Psychiatry, 23, 1566–1574.CrossRefGoogle Scholar
  30. Williams, C. L., Barnett, A. M., & Meck, W. H. (1990). Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behavioral Neuroscience, 104, 84–97.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Cognition, Development and Educational Psychology, Institute of NeurosciencesUniversitat de BarcelonaBarcelonaSpain
  2. 2.CCiTUB, Animal Research Unit of PsychologyUniversitat de BarcelonaBarcelonaSpain

Section editors and affiliations

  • Khalil Iskarous
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA