Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford


  • Susannah K. S. ThorpeEmail author
  • Jackie Chappell
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1414-1


Arboreality simply means living in the trees. There are numerous species that live in trees for all or part of their lives, including a wide range of rodent species, monkeys and great apes, koalas, sloths, many species of birds (such as parrots), and lizards like chameleons and geckos. Some animals live both on the forest floor and in tree crowns, whereas others, like Sumatran orangutans, are almost exclusively arboreal, rarely descending from the tree canopy. Arboreality imposes unique cognitive demands on animals because of the physical structure of the environment: trees and their branches form a discrete and discontinuous surface on which animals can move, and the risk of falling means that animals need to choose safe supports that can bear their weight in order to travel safely. In addition, food may be patchily and unpredictably distributed in three-dimensional space, so the cognitive demands of finding and processing food and of creating safe and comfortable places...

This is a preview of subscription content, log in to check access.


  1. Bailey, I. E., et al. (2014). Physical cognition: Birds learn the structural efficacy of nest material. Proceedings of the Royal Society B, 281, 20133225.CrossRefGoogle Scholar
  2. Biddle, L. E., Deeming, D. C., & Goodman, A. M. (2015). Morphology and biomechanics of the nests of the common blackbird Turdus merula. Bird Study, 62, 87–95.CrossRefGoogle Scholar
  3. Breen, A. J., Guillette, L. M., & Healy, S. D. (2016). What can nest-building birds teach us? Comparative Cognition and Behaviour Reviews, 11, 83–102.CrossRefGoogle Scholar
  4. Byrne, R. W. (1997). The technical intelligence hypothesis: An additional evolutionary stimulus to intelligence? In A. Whiten & R. W. Byrne (Eds.), Machiavellian intelligence II: Extensions and evaluations (pp. 289–311). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  5. Chappell, J., et al. (2012). How to build an information gathering and processing system: Lessons from naturally and artificially intelligent systems. Behavioural Processes, 89, 179–186.CrossRefGoogle Scholar
  6. Chevalier-Skolnikoff, S., Galdikas, B. M. F., & Skolnikoff, A. (1982). The adaptive significance of higher intelligence in wild orangutans, a preliminary report. Journal of Human Evolution, 11, 639–652.CrossRefGoogle Scholar
  7. DeCasien, A. R., Williams, S. A., & Higham, J. P. (2017). Primate brain size is predicted by diet but not sociality. Nature Ecology & Evolution, 1, s41559-017.CrossRefGoogle Scholar
  8. Di Fiore, A., & Suarez, S. A. (2007). Route based travel and shared routes in sympatric spider and woolly monkeys; cognitive and evolutionary implications. Animal Cognition, 10, 317–329.CrossRefGoogle Scholar
  9. Dolins, F. L., & Mitchell, R. W. (Eds.). (2010). Spatial cognition, spatial perception: mapping the self and space. Cambridge University Press.Google Scholar
  10. Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178–190.CrossRefGoogle Scholar
  11. Gallup, G. G. (1970). Chimpanzees: Self-recognition. Science, 167, 86–87.CrossRefGoogle Scholar
  12. Garber, P. A., & Dolins, F. L. (2014). Primate spatial strategies and cognition: Introduction to this special issue. American Journal of Primatology, 76, 393–398.CrossRefGoogle Scholar
  13. Garber, P. A., & Porter, L. M. (2014). Navigating in small-scale space: The role of landmarks and resource monitoring in understanding saddleback tamarin travel. American Journal of Primatology, 76, 447–459.CrossRefGoogle Scholar
  14. Healy, S. D., & Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings of the Royal Society B: Biological Sciences, 274, 453–464.CrossRefGoogle Scholar
  15. Healy, S., Walsh, P., & Hansell, M. (2008). Nest building by birds. Current Biology, 18, R271–R273.CrossRefGoogle Scholar
  16. Hunt, K. D. (2004). The special demands of great ape locomotion and posture. In A. Russon & D. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence. Cambridge: Cambridge University Press.Google Scholar
  17. Janson, C. (2014). Death of the (traveling) salesman: Primates do not show clear evidence of multi-step route planning. American Journal of Primatology, 76, 410–420.CrossRefGoogle Scholar
  18. Koops, K., et al. (2012). Nest-building by chimpanzees (Pan troglodytes verus) at Seringbara, Nimba Mountains: Antipredation, thermoregulation, and antivector hypotheses. International Journal of Primatology, 33, 356–380.CrossRefGoogle Scholar
  19. Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 534–548.CrossRefGoogle Scholar
  20. Normand, E., & Boesch, C. (2009). Sophisticated Euclidean maps in forest chimpanzees. Animal Behaviour, 77, 1195–1201.CrossRefGoogle Scholar
  21. Noser, R., & Byrne, R. W. (2014). Change point analysis of travel routes reveals novel insights into foraging strategies and cognitive maps of wild baboons. American Journal of Primatology, 76, 399–409.CrossRefGoogle Scholar
  22. Povinelli, D. J., & Cant, J. G. H. (1995). Arboreal clambering and the evolution of self-conception. Quarterly Review of Biology, 70, 393–421.CrossRefGoogle Scholar
  23. Povinelli, D. J., Gallup, G. G., Eddy, T. J., et al. (1997). Chimpanzees recognize themselves in mirrors. Animal Behaviour, 53, 1083–1088.CrossRefGoogle Scholar
  24. Remis, M. J. (1999). Tree structure and sex differences in arboreality among western lowland gorillas (Gorilla gorilla gorilla) at Bai Hokou, Central African Republic. Primates, 40, 383–396.CrossRefGoogle Scholar
  25. Samson, D. R., & Hunt, K. D. (2012). A thermodynamic comparison of arboreal and terrestrial sleeping sites for dry-habitat chimpanzees (Pan troglodytes schweinfurthii) at the Toro-Semliki Wildlife Reserve, Uganda. American Journal of Primatology, 74, 811–818.CrossRefGoogle Scholar
  26. Shettleworth, S. J. (2010). Cognition, evolution and behaviour. New York: Oxford University Press.Google Scholar
  27. Stewart, F. A., Pruetz, J. D. & Hansell, M. H. (2007). Do chimpanzees build comfortable nests? Am J Primatol, 69, 930–939.CrossRefGoogle Scholar
  28. Stewart, F. A. (2011). Brief communication: Why sleep in a nest? Empirical testing of the function of simple shelters made by wild chimpanzees. American Journal of Physical Anthropology, 146, 313–318.CrossRefGoogle Scholar
  29. Thorpe, S. K. S., & Crompton, R. H. (2006). Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. American Journal of Physical Anthropology, 131(3), 384–401.CrossRefGoogle Scholar
  30. Thorpe, S. K. S., Crompton, R. H., & Alexander, R. M. N. (2007). Orangutans utilise compliant branches to lower the energetic cost of locomotion. Biology Letters, 3, 253–256.CrossRefGoogle Scholar
  31. Thorpe, S. K. S., Holder, R., & Crompton, R. H. (2009). Orangutans employ unique strategies to control branch flexibility. Proceedings of the National Academy of Sciences, 106, 12646–12651.CrossRefGoogle Scholar
  32. Tutin, C. E. G., Parnell, R. J., White, L. J. T., & Fernandez, M. (1995). Nest-building by lowland gorillas in the lope-reserve, Gabon – environmental influences and implications for censusing. International Journal of Primatology, 16, 53–76.CrossRefGoogle Scholar
  33. van Casteren, A., Sellers, W. I., Thorpe, S. K. S., et al. (2012). Nest-building orangutans demonstrate engineering know-how to produce safe, comfortable beds. Proceedings of the National Academy of Sciences of the United States of America, 109, 6873–6877.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of BirminghamEdgbaston, BirminghamUK

Section editors and affiliations

  • Khalil Iskarous
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA