Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Neural Control of Behavior

  • Ashutosh KumarEmail author
  • Ravi Kant Narayan
  • Vikas Pareek
  • Chiman Kumari
  • Sanjib K. Ghosh
  • Muneeb A. Faiq
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1368-1


The way in which an individual acts in response to a stimulus or situation is called “behavior.” Behavior is chiefly controlled by the central nervous system (i.e., brain and spinal cord). Behavior can be innate (present since birth) or is learned during a lifetime. Further it can be simple or complex. The simplest forms of the behavior are the “reflexes” which are innate in nature. For a reflexive behavior, the individuals may fail to perceive a conscious appraisal, as it primarily gets executed from the motor centers in the brain stem or spinal cord. Complex behavior, a varying motor action or response adjusted to the need of a situation, involves more than one component of the brain and is intricately regulated. A stimulus which is received at the sensory receptors is carried by the nerves to the sensory cortex which generates perception and further sends it to the cognitive and the effectors domains of the brain where complex neural processing constructs a behavior...

This is a preview of subscription content, log in to check access.


  1. Altenmüller, E., & Furuya, S. (2016). Brain plasticity and the concept of metaplasticity in skilled musicians (pp. 197–208).  https://doi.org/10.1007/978-3-319-47313-0_11.CrossRefGoogle Scholar
  2. Blasco-Fontecilla, H., Fernández-Fernández, R., Colino, L., Fajardo, L., Perteguer-Barrio, R., & de Leon, J. (2016). The addictive model of self-harming (non-suicidal and suicidal) behavior. Frontiers in Psychiatry, 7, 8.  https://doi.org/10.3389/fpsyt.2016.00008.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Carrillo, M., Han, Y., Migliorati, F., Liu, M., Gazzola, V., & Keysers, C. (2019). Emotional mirror neurons in the Rat’s anterior cingulate cortex. Current Biology, (0), 0.  https://doi.org/10.1016/j.cub.2019.03.024.CrossRefGoogle Scholar
  4. Carta, I., Chen, C. H., Schott, A. L., Dorizan, S., & Khodakhah, K. (2019). Cerebellar modulation of the reward circuitry and social behavior. Science (New York), 363(6424), eaav0581.  https://doi.org/10.1126/science.aav0581.CrossRefGoogle Scholar
  5. Chen, P. B., Hu, R. K., Wu, Y. E., Pan, L., Huang, S., Micevych, P. E., & Hong, W. (2019). Sexually dimorphic control of parenting behavior by the medial amygdala. Cell, 176(5), 1206–1221.e18.  https://doi.org/10.1016/j.cell.2019.01.024.CrossRefPubMedGoogle Scholar
  6. Cipresso, P. (2015). Modeling behavior dynamics using computational psychometrics within virtual worlds. Frontiers in Psychology, 6, 1725.  https://doi.org/10.3389/fpsyg.2015.01725.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Crick, F. C., & Koch, C. (2005). What is the function of the claustrum? Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1458), 1271.  https://doi.org/10.1098/RSTB.2005.1661.CrossRefGoogle Scholar
  8. Deisseroth, K. (2010). Optogenetics: Controlling the brain with light [extended version] – scientific American. Retrieved April 14, 2019, from https://www.scientificamerican.com/article/optogenetics-controlling/.Google Scholar
  9. den Ouden, H. E. M., Kok, P., & de Lange, F. P. (2012). How prediction errors shape perception, attention, and motivation. Frontiers in Psychology, 3, 548.  https://doi.org/10.3389/fpsyg.2012.00548.CrossRefGoogle Scholar
  10. Diamond, L. M., & Dickenson, J. A. (2012). The neuroimaging of love and desire: Review and future directions. Clinical Neuropsychiatry, 1, 9.Google Scholar
  11. Emanuele, E., Politi, P., Bianchi, M., Minoretti, P., Bertona, M., & Geroldi, D. (2006). Raised plasma nerve growth factor levels associated with early-stage romantic love. Psychoneuroendocrinology, 31(3), 288–294.CrossRefGoogle Scholar
  12. Fouragnan, E., Retzler, C., & Philiastides, M. G. (2018). Separate neural representations of prediction error valence and surprise: Evidence from an fMRI meta-analysis. Human Brain Mapping, 39(7), 2887–2906.  https://doi.org/10.1002/hbm.24047.CrossRefPubMedGoogle Scholar
  13. Grabenhorst, F., Bá Ez-Mendoza, R., Genest, W., Deco, G., & Schultz, W. (2019). Primate amygdala neurons simulate decision processes of social partners article primate amygdala neurons simulate decision processes of social partners. Cell, 177, 1–13.  https://doi.org/10.1016/j.cell.2019.02.042.CrossRefGoogle Scholar
  14. Grau, C., Ginhoux, R., Riera, A., Nguyen, T. L., Chauvat, H., Berg, M., et al. (2014). Conscious brain-to-brain communication in humans using non-invasive technologies. PLoS One, 9(8), e105225.  https://doi.org/10.1371/journal.pone.0105225.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Han, W., Tellez, L. A., Perkins, M. H., Perez, I. O., Qu, T., Ferreira, J., et al. (2018). A neural circuit for gut-induced reward. Cell, 175(3), 665–678.e23.  https://doi.org/10.1016/j.cell.2018.08.049.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Harris, S., Kaplan, J. T., Curiel, A., Bookheimer, S. Y., Iacoboni, M., & Cohen, M. S. (2009). The neural correlates of religious and nonreligious belief. PLoS One, 4(10), e7272.  https://doi.org/10.1371/journal.pone.0007272.CrossRefPubMedCentralGoogle Scholar
  17. Heinrichs, M., von Dawans, B., & Domes, G. (2009). Oxytocin, vasopressin, and human social behavior. Frontiers in Neuroendocrinology, 30(4), 548–557.  https://doi.org/10.1016/j.yfrne.2009.05.005.CrossRefPubMedGoogle Scholar
  18. Hikosaka, O., Kim, H. F., Yasuda, M., & Yamamoto, S. (2014). Basal ganglia circuits for reward value–guided behavior. Annual Review of Neuroscience, 37(1), 289–306.  https://doi.org/10.1146/annurev-neuro-071013-013924.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017). Intelligence is associated with the modular structure of intrinsic brain networks. Scientific Reports, 7(1), 16088.  https://doi.org/10.1038/s41598-017-15795-7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Huis in ‘t Veld, E. M. J., & de Gelder, B. (2015). From personal fear to mass panic: The neurological basis of crowd perception. Human Brain Mapping, 36(6), 2338–2351.  https://doi.org/10.1002/hbm.22774.CrossRefPubMedGoogle Scholar
  21. Ibsen, S., Tong, A., Schutt, C., Esener, S., & Chalasani, S. H. (2015). Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nature Communications, 6(1), 8264.  https://doi.org/10.1038/ncomms9264.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jackson, J., Karnani, M. M., Zemelman, B. V., Burdakov, D., & Lee, A. K. (2018). Inhibitory control of prefrontal cortex by the claustrum. Neuron, 99(5), 1029–1039.e4.  https://doi.org/10.1016/j.neuron.2018.07.031.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Janak, P. H., & Tye, K. M. (2015). From circuits to behaviour in the amygdala. Nature, 517(7534), 284–292.  https://doi.org/10.1038/nature14188.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kays, J. L., Hurley, R. A., & Taber, K. H. (2012). The dynamic brain: Neuroplasticity and mental health. The Journal of Neuropsychiatry and Clinical Neurosciences, 24(2), 118–124.  https://doi.org/10.1176/appi.neuropsych.12050109.CrossRefPubMedGoogle Scholar
  25. Kiernan, J. A. John A., Barr, M. L., & Rajakumar, N. (2014). Barr’s the human nervous system : an anatomical viewpoint. 10th Edition. Lippincott Williams; Wilkins, a Wolters Kluwer business, 351 West Camden Street Two Commerce Square, Baltimore, 21201.Google Scholar
  26. Kim, H. F., & Hikosaka, O. (2015). Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain, 138(7), 1776–1800.  https://doi.org/10.1093/brain/awv134.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Koubeissi, M. Z., Bartolomei, F., Beltagy, A., & Picard, F. (2014). Electrical stimulation of a small brain area reversibly disrupts consciousness. Epilepsy & Behavior, 37, 32–35.  https://doi.org/10.1016/j.yebeh.2014.05.027.CrossRefGoogle Scholar
  28. Kumar, A., Faiq, M. A., Pandey, S. N., Pareek, V., Mochan, S., Kumar, P., et al. (2017a). Addictive influences and stress propensity in heavy internet users: A proposition for information overload mediated neuropsychiatric dysfunction. Current Psychiatry Reviews, 13(4).  https://doi.org/10.2174/1573400513666170728155836.CrossRefGoogle Scholar
  29. Kumar, A., Pareek, V., Raza, K., Kumar, P., Faiq, M. A., & Dantham, S. (2017b). Induction – Reversal modeling of psychiatric disorders by functional manipulation of habenular pathways in zebrafish. Neurology Psychiatry and Brain Research, 24.  https://doi.org/10.1016/j.npbr.2016.12.003.CrossRefGoogle Scholar
  30. Kumar, A., Pareek, V., Faiq, M. A., Kumari, C., Sharma, V. K., & Sanjib, S. K. (2018a). Hacking a brain for contemptuous interests: Ethical risks of advancing neuroscience techniques for mind control/selected abstracts from the 2018 international Neuroethics society annual meeting, In annual meeting. AJOB Neuroscience, 9(4), W16–W17.  https://doi.org/10.1080/21507740.2018.1553906.CrossRefGoogle Scholar
  31. Kumar, A., Kumar, P., Faiq, M. A., Sharma, V. K., Sesham, K., & Kulandhasamy, M. (2018b). Hormones and behavior. In Encyclopedia of animal cognition and behavior (pp. 1–22). Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-47829-6_476-2.CrossRefGoogle Scholar
  32. Kumar, A., Kumari, C., Mochan, S., Kulandhasamy, M., Sesham, K., & Sharma, V. K. (2018c). Endocrine system. In Encyclopedia of animal cognition and behavior (pp. 1–26). Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-47829-6_483-1.CrossRefGoogle Scholar
  33. Meunier, D., Lambiotte, R., & Bullmore, E. T. (2010). Modular and hierarchically modular Organization of Brain Networks. Frontiers in Neuroscience, 4, 200.  https://doi.org/10.3389/fnins.2010.00200.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nambu, A. (2009). Functions of direct, indirect and hyperdirect pathways. Brain and Nerve = Shinkei Kenkyu No Shinpo, 61(4), 360–372.PubMedGoogle Scholar
  35. Namkung, H., Kim, S.-H., & Sawa, A. (2017). The insula: An underestimated brain area in clinical neuroscience, psychiatry, and neurology. Trends in Neurosciences, 40(4), 200–207.  https://doi.org/10.1016/j.tins.2017.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Narikiyo, K., Mizuguchi, R., Ajima, A., Mitsui, S., Shiozaki, M., Hamanaka, H., & Yoshihara, Y. (2018). The claustrum coordinates cortical slow-wave activity. BioRxiv, 286773.  https://doi.org/10.1101/286773.
  37. Pareek, V. (2017). Model fitting. In J. Vonk & T. Shackelford (Eds.), Encyclopedia of animal cognition and behavior. Cham: Springer.  https://doi.org/10.1007/978-3-319-47829-6.CrossRefGoogle Scholar
  38. Ramachandran V. S. (1995). MIRROR NEURONS and imitation learning as the driving force behind the great leap forward in human evolution|Edge.org. Retrieved 14 Apr 2019, from https://www.edge.org/conversation/mirror-neurons-and-imitation-learning- as-the-driving-force-behind-the-great-leap-forward-in-human-evolution.
  39. Rapoport, M., van Reekum, R., & Mayberg, H. (2000). The role of the cerebellum in cognition and behavior. The Journal of Neuropsychiatry and Clinical Neurosciences, 12(2), 193–198.  https://doi.org/10.1176/jnp.12.2.193.CrossRefPubMedGoogle Scholar
  40. Rubin, R. D., Watson, P. D., Duff, M. C., & Cohen, N. J. (2014). The role of the hippocampus in flexible cognition and social behavior. Frontiers in Human Neuroscience, 8, 742.  https://doi.org/10.3389/fnhum.2014.00742.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Volman, I., Roelofs, K., Koch, S., Verhagen, L., & Toni, I. (2011). Anterior prefrontal cortex inhibition impairs control over social emotional actions. Current Biology, 21(20), 1766–1770.  https://doi.org/10.1016/j.cub.2011.08.050.CrossRefPubMedGoogle Scholar
  42. Xue, G., Chen, C., Lu, Z.-L., & Dong, Q. (2010). Brain imaging techniques and their applications in decision-making research. Acta Psychologica Sinica, 42(1), 120–137.  https://doi.org/10.3724/SP.J.1041.2010.00120.CrossRefPubMedGoogle Scholar
  43. Yun, S., Reynolds, R. P., Masiulis, I., & Eisch, A. J. (2016). Re-evaluating the link between neuropsychiatric disorders and dysregulated adult neurogenesis. Nature Medicine, 22(11), 1239–1247.  https://doi.org/10.1038/nm.4218.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zeki, S., & Romaya, J. P. (2008). Neural correlates of hate. PLoS One, 3(10), e3556.  https://doi.org/10.1371/journal.pone.0003556.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ashutosh Kumar
    • 1
    Email author
  • Ravi Kant Narayan
    • 1
  • Vikas Pareek
    • 2
  • Chiman Kumari
    • 4
  • Sanjib K. Ghosh
    • 1
  • Muneeb A. Faiq
    • 3
  1. 1.Department of AnatomyAll India Institute of Medical Sciences (AIIMS)PatnaIndia
  2. 2.Computational Neuroscience and Neuroimaging DivisionNational Brain Research Centre (NBRC)ManesarIndia
  3. 3.Neuroimaging and Visual Science Laboratory, Langone Medical CentreNew York University School of MedicineNew YorkUSA
  4. 4.Department of AnatomyPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia

Section editors and affiliations

  • Peggy Mason
    • 1
  • Yuri Sugano
    • 2
  1. 1.University of ChicagoChicagoUSA
  2. 2.NeurobiologyUniversity of ChicagoChicagoUSA