Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Mustelidae Cognition

  • Chris NewmanEmail author
  • Christina D. Buesching
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1193-1

Introduction

Due to their apparent intelligence and adaptability, mustelids typically thrive if introduced into new ranges and increasingly they live among us even in urbanized areas (e.g., stone martens (Martes foina): Hisano et al. 2016). Yet, despite our general acquaintance with some members of this family, many aspects of their behavior, and particularly their cognitive abilities, remain more mysterious than those of their canid and felid cousins. This is likely due to their smaller size and more nocturnal lifestyle as well as being less amenable to being domesticated (with the singular exception of the domesticated ferret Mustela putorius furo). In this chapter we explore why this should be, identifying that despite being unified as “long, thin, and stinky,” they exhibit a diversity of cognitive traits linked to their form and function, powers of perception, and communication, resulting in disparate extents of social behavior and cognitive abilities.

The Constraints of Form,...

This is a preview of subscription content, log in to check access.

References

  1. Agrell, J., Wolff, J. O., & Ylönen, H. (1998). Counter-strategies to infanticide in mammals: Costs and consequences. Oikos, 507–517.Google Scholar
  2. Baker, S. E., Johnson, P. J., Slater, D., Watkins, R. W., & Macdonald, D. W. (2007). Learned food aversion with and without an odour cue for protecting untreated baits from wild mammal foraging. Applied Animal Behaviour Science, 102(3), 410–428.CrossRefGoogle Scholar
  3. Baker, S. E., & Macdonald, D. W. (2015). Managing wildlife humanely with learned food aversion. In D. W. Macdonald & R. E. Feber (Eds.), Wildlife conservation on farmland (Vol. 2, pp. 260–275). Oxford: Oxford University Press.CrossRefGoogle Scholar
  4. Balliet, R. F., & Schusterman, R. J. (1971). Underwater and aerial visual acuity in the Asian “clawless” otter (Amblonyx cineria cineria). Nature, 234(5327), 305–306.CrossRefPubMedGoogle Scholar
  5. Begg, C. M. (2006). Feeding ecology and social organisation of honey badgers (Mellivora capensis) in the southern Kalahari. Doctoral dissertation. University of Pretoria.Google Scholar
  6. Biggins, D. E., & Eads, D. A. (2017). Evolution, natural history, and conservation of black-footed ferrets. In D. W. Macdonald, C. Newman, & L. A. Harrington (Eds.), Biology and conservation of musteloids (pp. 366–384). Oxford: Oxford University Press.Google Scholar
  7. Bourlond, A., & Winkelmann, R. K. (1966). Nervenendorgane der Haut beim Dachs. Acta Neurovegetativa, 29(1), 140–155.CrossRefPubMedGoogle Scholar
  8. Buesching, C. D., & Stankowich, T. (2017). Communication amongst the musteloids: signs, signals, and cues. In D. W. Macdonald, C. Newman, & L. A. Harrington (Eds.), Biology and conservation of musteloids (pp. 158–177). Oxford: Oxford University Press.Google Scholar
  9. Caldwell, H. K., Stephens, S. L., & Young, W. S. (2008). Oxytocin as a natural antipsychotic: A study using oxytocin knockout mice. Molecular Psychiatry, 14, 190–196.CrossRefPubMedGoogle Scholar
  10. Carss, D. (1995). Foraging behaviour and feeding ecology of the otter Lutra lutra: A selective review. Hystrix, the Italian Journal of Mammalogy, 7(1–2).Google Scholar
  11. Clinchy, M., Zanette, L. Y., Roberts, D., Suraci, J. P., Buesching, C. D., Newman, C., & Macdonald, D. W. (2016). Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behavioral Ecology, 27(6), 1826–1832.Google Scholar
  12. Cowan, N. (1984). On short and long auditory stores. Psychological bulletin, 96(2), 341.CrossRefPubMedGoogle Scholar
  13. Cox, R., Stewart, P. D., & Macdonald, D. W. (1999). The ectoparasites of the European badger, Meles meles, and the behavior of the host-specific flea, Paraceras melis. Journal of Insect Behavior, 12(2), 245–265.CrossRefGoogle Scholar
  14. Davenport, L. C. (2010). Aid to a declining matriarch in the giant otter (Pteronura brasiliensis). PLoS One, 5, e11385.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Doty, B. A., Jones, C. N., & Doty, L. A. (1967). Learning-set formation by mink, ferrets, skunks, and cats. Science, 155(3769), 1579.CrossRefPubMedGoogle Scholar
  16. Douglas, D. A., Houde, A., Song, J. H., Farookhi, R., Concannon, P. W., & Murphy, B. D. (1998). Luteotropic hormone receptors in the ovary of the mink (Mustela vison) during delayed implantation and early-postimplantation gestation. Biology of Reproduction, 59, 571–578.CrossRefPubMedGoogle Scholar
  17. Dunbar, R. I. (1988). The social brain hypothesis. Brain, 9(10), 178–190.Google Scholar
  18. Fell, R. J., Buesching, C. D., & Macdonald, D. W. (2006). The social integration of European badger (Meles meles) cubs into their natal group. Behaviour, 143(6), 683–700.CrossRefGoogle Scholar
  19. Finarelli, J. A., & Flynn, J. J. (2009). Brain-size evolution and sociality in Carnivora. Proceedings of the National Academy of Sciences, 106(23), 9345–9349.CrossRefGoogle Scholar
  20. Frick, E. E., Friedman, L., Peranteau, J., Beacham, K., Kuczaj, I. I., Stan, A. (2016). Flexibility and use of a novel tool in Asian small clawed otters (Aonyx cinerea). International Journal of Comparative Psychology, 29(1).Google Scholar
  21. Fuji, J. A., Ralls, K., & Tinker, M. T. (2014). Ecological drivers of variation in tool-use frequency across sea otter populations. Behavioral Ecology, 26(2), 519–526.CrossRefGoogle Scholar
  22. Gittleman, J. L. (1986). Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy, 67(1), 23–36.CrossRefGoogle Scholar
  23. Green, M. L., Monick, K., Manjerovic, M. B., Novakofski, J., & Mateus-Pinilla, N. (2015). Communication stations: Cameras reveal river otter (Lontra canadensis) behavior and activity patterns at latrines. Journal of Ethology, 33(3), 225–234.CrossRefGoogle Scholar
  24. Groenendijk, J., Hayek, F., Johnson, P. J., & Macdonald, D. W. (2017). Giant otters: Using knowledge of life history for conservation. In D. W. Macdonald, C. Newman, & L. A. Harrington (Eds.), Biology and conservation of musteloids (pp. 466–486). Oxford: Oxford University Press.Google Scholar
  25. Guilford, T., & Dawkins, M. S. (1991). Receiver psychology and the evolution of animal signals. Animal Behaviour, 42(1), 1–14.CrossRefGoogle Scholar
  26. Harding, E. J., Paul, E. S., & Mendl, M. (2004). Animal behaviour: Cognitive bias and affective state. Nature, 427(6972), 312–312.CrossRefPubMedGoogle Scholar
  27. Hatfield, B. B., Marks, D. B., Tinker, M. T., Nolan, K., & Peirce, J. (1998). Attacks on sea otters by killer whales. Marine Mammal Science, 14(4), 888–894.CrossRefGoogle Scholar
  28. Heffner, R. S., & Heffner, H. E. (1987). Localization of noise, use of binaural cues, and a description of the superior olivary complex in the smallest carnivore, the least weasel (Mustela nivalis). Behavioral Neuroscience, 101, 701–708.CrossRefPubMedGoogle Scholar
  29. Hisano, M., Raichev, E. G., Peeva, S., Tsunoda, H., Newman, C., Masuda, R., et al. (2016). Comparing the summer diet of stone martens (Martes foina) in urban and natural habitats in Central Bulgaria. Ethology Ecology & Evolution, 28, 295–311.CrossRefGoogle Scholar
  30. Holekamp, K. E., & Benson-Amram, S. (2017). The evolution of intelligence in mammalian carnivores. Interface Focus, 7.  https://doi.org/10.1098/rsfs.2016.0108.
  31. Iwaniuk, A. N., Pellis, S. M., & Whishaw, I. Q. (1999). The relationship between forelimb morphology and behaviour in North American carnivores (Carnivora). Canadian Journal of Zoology, 77(7), 1064–1074.CrossRefGoogle Scholar
  32. Kitchener, A. C., Meloro, C., & Williams, T. M. (2017). Form and function of the musteloids. In D. W. Macdonald, C. Newman, & L. A. Harrington (Eds.), Biology and conservation of musteloids (pp. 98–135). Oxford: Oxford University Press.Google Scholar
  33. Kvitek, R. G., DeGunge, A. R., & Beitler, M. K. (1991). Paralytic shellfish poisoning toxins mediate feeding behavior of sea otters. Limnology and Oceanography, 36, 393–404.CrossRefGoogle Scholar
  34. Lehner, P. N. (1981). Coyote-badger associations. Western North American Naturalist, 41, 347–348.Google Scholar
  35. Lemasson, A., Mikus, M. A., Blois-Heulin, C., & Lodé, T. (2014). Vocal repertoire, individual acoustic distinctiveness, and social networks in a group of captive Asian small-clawed otters (Aonyx cinerea). Journal of Mammalogy, 95(1), 128–139.CrossRefGoogle Scholar
  36. Leuchtenberger, C., & Mourao, G. (2009). Scent-marking of giant otter in the Southern Pantanal, Brazil. Ethology, 115(3), 210–216.CrossRefGoogle Scholar
  37. Leuchtenberger, C., Sousa-Lima, R., Duplaix, N., Magnusson, W. E., & Mourão, G. (2014). Vocal repertoire of the social giant otter. The Journal of the Acoustical Society of America, 136(5), 2861–2875.CrossRefPubMedGoogle Scholar
  38. Martin, R., Rodríguez, A., & Delibes, M. (1995). Local feeding specialization by badgers (Meles meles) in a mediterranean environment. Oecologia, 101(1), 45–50.CrossRefPubMedGoogle Scholar
  39. Macdonald, D. W., & Newman, C. (2017). Musteloid sociality: the grass-roots of society. In D. W. Macdonald, C. Newman, & L. A. Harrington (Eds.), Biology and conservation of musteloids (pp. 178–202). Oxford: Oxford University Press.Google Scholar
  40. Macdonald, D. W., Newman, C., & Buesching, C. D. (2015). Badgers in the rural landscape – Conservation paragon or farming pariah: Lessons from the he Wytham Badger Project. In D. W. Macdonald & R. E. Feber (Eds.), Wildlife conservation on farmland (Vol. 2, pp. 65–95). Oxford: Oxford University Press.Google Scholar
  41. McDermott, R., Tingley, D., Cowden, J., Frazzetto, G., & Johnson, D. D. (2009). Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proceedings of the National Academy of Sciences, 106, 2118–2123.CrossRefGoogle Scholar
  42. McLean, A. N. (2001). Cognitive abilities – The result of selective pressures on food acquisition? Applied Animal Behaviour Science, 71(3), 241–258.CrossRefPubMedGoogle Scholar
  43. Minta, S. C., Minta, K. A., & Lott, D. F. (1992). Hunting associations between badgers (Taxidea taxus) and coyotes (Canis latrans). Journal of Mammalogy, 73, 814–820.CrossRefGoogle Scholar
  44. Newman, C., Buesching, C. D., & Wolff, J. O. (2005). The function of facial masks in “midguild” carnivores. Oikos, 108(3), 623–633.CrossRefGoogle Scholar
  45. Noonan, M. J., Newman, C., Buesching, C. D., & Macdonald, D. W. (2015a). Evolution and function of fossoriality in the carnivora: Implications for group-living. Frontiers in Ecology and Evolution, 3, 116.CrossRefGoogle Scholar
  46. Noonan, M. J., Markham, A., Newman, C., Trigoni, N., Buesching, C. D., Ellwood, S. A., & Macdonald, D. W. (2015b). A new magneto-inductive tracking technique to uncover subterranean activity: What do animals do underground? Methods in Ecology and Evolution, 6(5), 510–520.CrossRefGoogle Scholar
  47. Pecher, D., & Zwaan, R. A. (Eds.). (2005). Grounding cognition: The role of perception and action in memory, language, and thinking. Cambridge: Cambridge University Press.Google Scholar
  48. Perreault, M., & Plowright, C. M. S. (2004). Shortcut taking by ferrets (Mustela putorius furo). International Journal of Comparative Psychology, 17(4), 360–368.Google Scholar
  49. Porter, R. H., Balogh, R. D., Cernoch, J. M., & Franchi, C. (1986). Recognition of kin through characteristic body odors. Chemical Senses, 11(3), 389–395.CrossRefGoogle Scholar
  50. Radinsky, L. B. (1968). Evolution of somatic sensory specialization in otter brains. Journal of Comparative Neurology, 134, 495–505.CrossRefPubMedGoogle Scholar
  51. Rankin, D. J., & Taborsky, M. (2009). Assortment and the evolution of generalized reciprocity. Evolution, 63(7), 1913–1922.CrossRefPubMedGoogle Scholar
  52. Ribas, C., Damasceno, G., Magnusson, W., Leuchtenberger, C., & Mourão, G. (2012). Giant otters feeding on caiman: Evidence for an expanded trophic niche of recovering populations. Studies on Neotropical Fauna and Environment, 47(1), 19–23.CrossRefGoogle Scholar
  53. Rousseau, K., Atcha, Z., & Loudon, A. S. I. (2003). Leptin and seasonal mammals. Journal of Neuroendocrinology, 15, 409–414.CrossRefPubMedGoogle Scholar
  54. Scheifele, P. M., Johnson, M. T., Fry, M., Hamel, B., & Laclede, K. (2015). Vocal classification of vocalizations of a pair of Asian small-clawed otters to determine stress. The Journal of the Acoustical Society of America, 138(1), EL105–EL109.CrossRefPubMedGoogle Scholar
  55. Sirén, A. P., Pekins, P. J., Abdu, P. L., & Ducey, M. J. (2016). Identification and density estimation of American martens (Martes americana) using a novel camera-trap method. Diversity, 8(1), 3.CrossRefGoogle Scholar
  56. Soley, F. G., & Alvarado-Díaz, I. (2011). Prospective thinking in a mustelid? Eira barbara (Carnivora) cache unripe fruits to consume them once ripened. Naturwissenschaften, 98, 693–698.CrossRefPubMedGoogle Scholar
  57. Sutherland, N. S., & Mackintosh, N. J. (2016). Mechanisms of animal discrimination learning. New York: Academic Press.Google Scholar
  58. Taylor, M. E. (1989). Locomotor adaptations by carnivores. In Carnivore behavior, ecology, and evolution (pp. 382–409). New York: Springer.CrossRefGoogle Scholar
  59. Tinnesand, H. V., Buesching, C. D., Noonan, M. J., Newman, C., Zedrosser, A., Rosell, F., & Macdonald, D. W. (2015). Will trespassers be prosecuted or assessed according to their merits? A consilient interpretation of territoriality in a group-living carnivore, the European badger (Meles meles). PLoS One, 10(7), e0132432.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models. In A. U. Frank (Ed.), Spatial information theory: A theoretical basis for GIS. European Conference, COSIT’93, Marciana Marina, Elba Island, Italy, September 19–22, 1993. Proceedings (pp. 14–24, Vol. 716). Springer.Google Scholar
  61. Wilder, H. (1996). Interpretive cognitive ethology. In M. Bekoff, & D. Jamieson (Eds.), Readings in animal cognition (pp. 29–62). Cambridge, MA: MIT Press.Google Scholar
  62. Zhou, Y., Newman, C., Chen, J., Xie, Z., & Macdonald, D. W. (2013). Anomalous, extreme weather disrupts obligate seed dispersal mutualism: Snow in a subtropical forest ecosystem. Global Change Biology, 19(9), 2867–2877.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Wildlife Conservation Research Unit, Department of ZoologyUniversity of Oxford, The Recanati-Kaplan CentreOxfordUK

Section editors and affiliations

  • Caroline Leuchtenberger
    • 1
  1. 1.Federal Institute FarroupilhaPanambiBrasil