Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Placodermi Diet

  • Kate TrinajsticEmail author
  • Brett Roelofs
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1175-1



Placoderm diet describes the food consumed for species within the order Placodermi, which includes antiarchs, ptyctodonts, and arthrodires.


There are few cases where the diet of placoderms can be observed directly from preserved stomach contents. Most inferences about diet are made from the type of tooth plates present, calculations of gape and bite force, and body morphology. In addition, the fauna associated with the placoderms can provide information of the food sources available.

The antiarch placoderms (Fig. 1a) are interpreted as being benthophageous. Direct evidence from the gut contents of Bothriolepis canadensis from the Escuminac Formation, Canada shows that it fed at on the conchostracan Asmusia membranacea. Juvenile specimens of actinolepids have been recovered from Lode Quarry in Latvia with stomachs filled with these small crustaceans, supporting them as secondary consumers (Upeniece 2001). This differs from earlier...
This is a preview of subscription content, log in to check access.


  1. Anderson, P. S. L. (2008). Shape variation between arthrodire morphotypes indicates possible feeding niches. Journal of Vertebrate Paleontology, 28, 961–969.  https://doi.org/10.1671/0272-4634-28.4.961.CrossRefGoogle Scholar
  2. Anderson, P. S. L. (2009). Biomechanics, functional patterns, and disparity in Late Devonian arthrodires. Paleobiology, 35, 321–342.  https://doi.org/10.1666/0094-8373-35.3.321.CrossRefGoogle Scholar
  3. Anderson, P. S., & Westneat, M. W. (2009). A biomechanical model of feeding kinematics for Dunkleosteus terrelli (Arthrodira, Placodermi). Paleobiology, 35, 251–269.  https://doi.org/10.1666/08011.1.CrossRefGoogle Scholar
  4. Carr, R. K., & Jackson, G. L. (2010). The vertebrate fauna of the Cleveland member (Famennian) of the Ohio Shale. In J. T. Hannibal (Ed.), Guide to the geology and paleontology of the Cleveland member of the Ohio Shale (pp. 1–17). Cleveland: Ohio Geological Survey Guidebook 22.Google Scholar
  5. King, B., Young, G. C., & Long, J. A. (2018). New information on Brindabellaspis stensioi Young, 1980, highlights morphological disparity in early Devonian placoderms. Royal Society Open Science, 5, 1–14.  https://doi.org/10.1098/rsos.180094.CrossRefGoogle Scholar
  6. Long, J. A., Trinajstic, K., & Johanson, Z. (2009). Devonian arthrodire embryos and the origin of internal fertilization in vertebrates. Nature, 457, 1124–1127.  https://doi.org/10.1038/nature07732.CrossRefPubMedGoogle Scholar
  7. Miles, R. S. (1971). The Holonematidae (placoderm fishes), a review based on new specimens of Holonema from the Upper Devonian of Western Australia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, pp. 101–234.CrossRefGoogle Scholar
  8. Trinajstic, K., & Long, J. A. (2009). A new genus and species of Ptyctodont (Placodermi) from the Late Devonian Gneudna Formation, Western Australia, and ananalysis of Ptyctodont phylogeny. Geological Magazine, 146, 743–760.  https://doi.org/10.1017/S001675680900644X.CrossRefGoogle Scholar
  9. Upeniece, I. (2001). The unique fossil assemblage from the Lode Quarry (Upper Devonian, Latvia). Fossil Record 4, 101–119.  https://doi.org/10.1002/mmng.20010040108.CrossRefGoogle Scholar
  10. Young, G. C., & Zhang, G. R. (1996). New information on the morphology of yunnanolepid antiarchs (placoderm fishes) from the Early Devonian of South China. Journal of Vertebrate Palaeontology, 16, 623–641.  https://doi.org/10.1080/02724634.1996.10011353.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Molecular and Life SciencesCurtin UniversityPerthAustralia

Section editors and affiliations

  • Marieke Cassia Gartner
    • 1
  1. 1.Zoo AtlantaAtlantaUSA