Advertisement

Microbial Biosensors for the Detection of Organic Pollutants

  • Benjamin Shemer
  • Shimshon BelkinEmail author
Living reference work entry

Abstract

Over the last 30 years, numerous scientific publications have described the design, construction, testing, and characterization of diverse whole-cell bioreporter strains for the detection and quantification of organic pollutants. In this chapter we attempt to review these reports, providing the relevant information regarding the sensor strains’ construction principles and performance characteristics, with a special emphasis on the detection thresholds of either specific target compounds or classes of such chemicals.

Keywords

Bioreporter Biosensor Organic pollutants Endocrine-disrupting compounds Explosives Pesticides BTEX Halogenated organics 

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR) (1995) Toxicological profile for 2,4,6-trinitrotoluene (TNT). U.S. Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  2. Agency for Toxic Substances and Disease Registry (ATSDR) (2004) Interaction profile for: benzene, toluene, ethylbenzene, and xylenes (BTEX). U.S. Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  3. Agency for Toxic Substances and Disease Registry (ATSDR) (2005) Toxicological profile for naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene. U.S. Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  4. Agency for Toxic Substances and Disease Registry (ATSDR) (2016) Toxicological profile for dinitrotoluenes. U.S. Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  5. Alavanja MC (2009) Introduction: pesticides use and exposure, extensive worldwide. Rev Environ Health 24:303–310CrossRefGoogle Scholar
  6. Alavanja MC, Hoppin JA, Kamel F (2004) Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu Rev Public Health 25:155–197CrossRefGoogle Scholar
  7. Alkasrawi M, Nandakumar R, Margesin R et al (1999) A microbial biosensor based on Yarrowia lipolytica for the off-line determination of middle-chain alkanes. Biosens Bioelectron 14:723–727.  https://doi.org/10.1016/S0956-5663(99)00046-9CrossRefPubMedGoogle Scholar
  8. Altamirano M, Garcıa-Villada L, Agrelo M et al (2004) A novel approach to improve specificity of algal biosensors using wild-type and resistant mutants: an application to detect TNT. Biosens Bioelectron 19:1319–1323CrossRefGoogle Scholar
  9. Anu Prathap MU, Chaurasia AK, Sawant SN, Apte SK (2012) Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane. Anal Chem 84:6672–6678.  https://doi.org/10.1021/ac301077dCrossRefPubMedGoogle Scholar
  10. Applegate B, Kehrmeyer S, Sayler G (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing. Appl Environ Microbiol 64:2730–2735PubMedPubMedCentralGoogle Scholar
  11. Arnold SF, Robinson MK, Notides AC et al (1996) A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens. Environ Health Perspect 104:544–548.  https://doi.org/10.1289/ehp.96104544CrossRefPubMedPubMedCentralGoogle Scholar
  12. Assinder SJ, Williams PA (1990) The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31:1–69. ElsevierCrossRefGoogle Scholar
  13. Azuma K, Tanaka-Kagawa T, Jinno H (2018) Health risk assessment of inhalation exposure to long-chain aliphatic hydrocarbons and aldehydes, TMB, MCH, and MIBK in indoor environments. Environ Health Perspect. Abstract presented at the International Society of Exposure Science and the International Society for Environmental Epidemiology (ISES-ISEE) 2018 Joint Annual MeetingGoogle Scholar
  14. Bahl MI, Hansen LH, Sørensen SJ (2005) Construction of an extended range whole-cell tetracycline biosensor by use of the tet(M) resistance gene. FEMS Microbiol Lett 253:201–205.  https://doi.org/10.1016/j.femsle.2005.09.034CrossRefPubMedGoogle Scholar
  15. Belkin S, Yagur-Kroll S, Kabessa Y et al (2017) Remote detection of buried landmines using a bacterial sensor. Nat Biotechnol 35:308–310CrossRefGoogle Scholar
  16. Benimeli CS, Castro GR, Chaile AP, Amoroso MJ (2007) Lindane uptake and degradation by aquatic Streptomyces sp. strain M7. Int Biodeterior Biodegrad 59:148–155.  https://doi.org/10.1016/j.ibiod.2006.07.014CrossRefGoogle Scholar
  17. Berg M, Undisz K, Thiericke R et al (2000) Miniaturization of a functional transcription assay in yeast (human progesterone receptor) in the 384- and 1536-well plate format. J Biomol Screen 5:71–76.  https://doi.org/10.1177/108705710000500203CrossRefPubMedGoogle Scholar
  18. Biran A, Ben-Yoav H, Yagur-Kroll S et al (2011) Microbial genotoxicity bioreporters based on sulA activation. Anal Bioanal Chem 400:3013–3024CrossRefGoogle Scholar
  19. Bloomquist JR (1993) Toxicology, mode of action and target site-mediated resistance to insecticides acting on chloride channels. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 106:301–314.  https://doi.org/10.1016/0742-8413(93)90138-BCrossRefGoogle Scholar
  20. Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8(3):444–472CrossRefGoogle Scholar
  21. Burlage R, Hooper S, Sayler G (1989) The TOL (pWW0) catabolic plasmid. Appl Environ Microbiol 55:1323PubMedPubMedCentralGoogle Scholar
  22. Burlage RS, Sayler GS, Larimer F (1990) Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions. J Bacteriol 172:4749–4757CrossRefGoogle Scholar
  23. Burlage RS, Everman KR, Patek DR (1999) Method for detection of buried explosives using a biosensor. US Patent US5972638AGoogle Scholar
  24. Chamas A, Pham HTM, Jähne M et al (2017a) Separation and identification of hormone-active compounds using a combination of chromatographic separation and yeast-based reporter assay. Sci Total Environ 605–606:507–513.  https://doi.org/10.1016/j.scitotenv.2017.06.077CrossRefPubMedGoogle Scholar
  25. Chamas A, Pham HTM, Jähne M et al (2017b) Simultaneous detection of three sex steroid hormone classes using a novel yeast-based biosensor. Biotechnol Bioeng 114:1539–1549.  https://doi.org/10.1002/bit.26249CrossRefPubMedGoogle Scholar
  26. Cho JH, Lee DY, Lim WK, Shin HJ (2014) A recombinant Escherichia coli biosensor for detecting polycyclic aromatic hydrocarbons in gas and aqueous phases. Prep Biochem Biotechnol 44:849–860.  https://doi.org/10.1080/10826068.2014.887577CrossRefPubMedGoogle Scholar
  27. Chong H, Ching CB (2016) Development of colorimetric-based whole-cell biosensor for organophosphorus compounds by engineering transcription regulator DmpR. ACS Synth Biol 5:1290–1298.  https://doi.org/10.1021/acssynbio.6b00061CrossRefPubMedGoogle Scholar
  28. Chopra I, Hacker K, Misulovin Z, Rothstein DM (1990) Sensitive biological detection method for tetracyclines using a tetA-lacZ fusion system. Antimicrob Agents Chemother 34:111–116.  https://doi.org/10.1128/AAC.34.1.111CrossRefPubMedPubMedCentralGoogle Scholar
  29. Davidson ME, Harbaugh SV, Chushak YG et al (2012) Development of a 2, 4-dinitrotoluene-responsive synthetic riboswitch in E. coli cells. ACS Chem Biol 8:234–241CrossRefGoogle Scholar
  30. de las Heras A, de Lorenzo V (2011a) In situ detection of aromatic compounds with biosensor Pseudomonas putida cells preserved and delivered to soil in water-soluble gelatin capsules. Anal Bioanal Chem 400:1093–1104CrossRefGoogle Scholar
  31. de las Heras A, de Lorenzo V (2011b) Cooperative amino acid changes shift the response of the σ54-dependent regulator XylR from natural m-xylene towards xenobiotic 2, 4-dinitrotoluene. Mol Microbiol 79:1248–1259CrossRefGoogle Scholar
  32. De Las Heras A, Carreño CA, De Lorenzo V (2008) Stable implantation of orthogonal sensor circuits in Gram-negative bacteria for environmental release. Environ Microbiol 10:3305–3316CrossRefGoogle Scholar
  33. Eldridge ML, Sanseverino J, Layton AC et al (2007) Saccharomyces cerevisiae BLYAS, a new bioluminescent bioreporter for detection of androgenic compounds. Appl Environ Microbiol 73:6012–6018CrossRefGoogle Scholar
  34. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefGoogle Scholar
  35. Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 58:641–685PubMedPubMedCentralGoogle Scholar
  36. Frense D, Müller A, Beckmann D (1998) Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sens Actuators B Chem 51:256–260.  https://doi.org/10.1016/S0925-4005(98)00203-2CrossRefGoogle Scholar
  37. Furst AL, Hoepker AC, Francis MB (2017) Quantifying hormone disruptors with an engineered bacterial biosensor. ACS Cent Sci 3:110–116.  https://doi.org/10.1021/acscentsci.6b00322CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gaido KW, Leonard LS, Lovell S et al (1997) Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol 143:205–212.  https://doi.org/10.1006/taap.1996.8069CrossRefPubMedGoogle Scholar
  39. Garmendia J, De Las Heras A, Galvão TC, De Lorenzo V (2008) Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microb Biotechnol 1:236–246CrossRefGoogle Scholar
  40. Gavlasova P, Kuncova G, Kochankova L, Mackova M (2008) Whole cell biosensor for polychlorinated biphenyl analysis based on optical detection. Int Biodeterior Biodegrad 62:304–312.  https://doi.org/10.1016/j.ibiod.2008.01.015CrossRefGoogle Scholar
  41. Han T-S, Kim Y-C, Sasaki S et al (2001) Microbial sensor for trichloroethylene determination. Anal Chim Acta 431:225–230.  https://doi.org/10.1016/S0003-2670(00)01329-5CrossRefGoogle Scholar
  42. Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753CrossRefGoogle Scholar
  43. Hnaien M, Lagarde F, Bausells J et al (2011) A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture. Anal Bioanal Chem 400:1083–1092.  https://doi.org/10.1007/s00216-010-4336-xCrossRefPubMedGoogle Scholar
  44. Hua A, Gueuné H, Cregut M et al (2015) Development of a bacterial bioassay for atrazine and cyanuric acid detection. Front Microbiol 6:Article 211.  https://doi.org/10.3389/fmicb.2015.00211CrossRefPubMedGoogle Scholar
  45. Hutter W, Peter J, Swoboda H et al (1995) Development of a microbial bioassay for chlorinated and brominated hydrocarbons. Anal Chim Acta 306:237–241.  https://doi.org/10.1016/0003-2670(94)00679-GCrossRefGoogle Scholar
  46. Kao W-C, Belkin S, Cheng J-Y (2018) Microbial biosensing of ciprofloxacin residues in food by a portable lens-free CCD-based analyzer. Anal Bioanal Chem 410:1257–1263CrossRefGoogle Scholar
  47. Kim J-W, Kim J-H, Tung S (2008) Nanoscale flagellar-motor based MEMS biosensor for explosive detection. IEEE, pp 630–632Google Scholar
  48. King JMH, DiGrazia PM, Applegate B et al (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781.  https://doi.org/10.1126/science.249.4970.778CrossRefPubMedGoogle Scholar
  49. Klotz DM, Ladlie BL, Vonier PM et al (1997) o,p′-DDT and its metabolites inhibit progesterone-dependent responses in yeast and human cells. Mol Cell Endocrinol 129:63–71.  https://doi.org/10.1016/S0303-7207(96)04041-5CrossRefPubMedGoogle Scholar
  50. Köhler S, Bachmann TT, Schmitt J et al (2000) Detection of 4-chlorobenzoate using immobilized recombinant Escherichia coli reporter strains. Sens Actuators B Chem 70:139–144.  https://doi.org/10.1016/S0925-4005(00)00583-9CrossRefGoogle Scholar
  51. Korpela MT, Kurittu JS, Karvinen JT, Karp MT (1998) A recombinant Escherichia coli sensor strain for the detection of tetracyclines. Anal Chem 70:4457–4462.  https://doi.org/10.1021/ac980740eCrossRefPubMedGoogle Scholar
  52. Kumari R, Tecon R, Beggah S et al (2011) Development of bioreporter assays for the detection of bioavailability of long-chain alkanes based on the marine bacterium Alcanivorax borkumensis strain SK2. Environ Microbiol 13:2808–2819.  https://doi.org/10.1111/j.1462-2920.2011.02552.xCrossRefPubMedGoogle Scholar
  53. Laffon B, Pásaro E, Valdiglesias V (2016) Effects of exposure to oil spills on human health: updated review. J Toxicol Environ Health B 19:105–128.  https://doi.org/10.1080/10937404.2016.1168730CrossRefGoogle Scholar
  54. Layton AC, Muccini M, Ghosh MM, Sayler GS (1998) Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls. Appl Environ Microbiol 64:5023–5026PubMedPubMedCentralGoogle Scholar
  55. Lei Y, Mulchandani P, Wang J et al (2005) Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Environ Sci Technol 39:8853–8857.  https://doi.org/10.1021/es050720bCrossRefPubMedGoogle Scholar
  56. Li J, Ma M, Wang Z (2008) A two-hybrid yeast assay to quantify the effects of xenobiotics on thyroid hormone-mediated gene expression. Environ Toxicol Chem 27:159–167CrossRefGoogle Scholar
  57. Li J, Ba Q, Yin J et al (2013) Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides. PLoS One 8:e72986CrossRefGoogle Scholar
  58. Lönneborg R, Varga E, Brzezinski P (2012) Directed evolution of the transcriptional regulator DntR: isolation of mutants with improved DNT-response. PLoS One 7:e29994CrossRefGoogle Scholar
  59. Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–190CrossRefGoogle Scholar
  60. Loomis D, Guyton K, Grosse Y et al (2015) Carcinogenicity of lindane, DDT, and 2, 4-dichlorophenoxyacetic acid. Lancet Oncol 16:891–892CrossRefGoogle Scholar
  61. López Rodriguez ML, Madrid RE, Giacomelli CE (2014) The optimization of the culture medium to design Streptomyces sp. M7 based impedimetric biosensors. Sens Actuators B Chem 193:230–237.  https://doi.org/10.1016/j.snb.2013.11.066CrossRefGoogle Scholar
  62. López Rodriguez ML, Benimeli C, Madrid RE, Giacomelli CE (2015) A simple Streptomyces spore-based impedimetric biosensor to detect lindane pesticide. Sens Actuators B Chem 207:447–454.  https://doi.org/10.1016/j.snb.2014.10.030CrossRefGoogle Scholar
  63. Luo Y, Guo W, Ngo HH et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641.  https://doi.org/10.1016/j.scitotenv.2013.12.065CrossRefPubMedGoogle Scholar
  64. MacDonald J, Lockwood J, McFee J, et al (2003) Alternatives for landmine detection. DTIC DocumentGoogle Scholar
  65. Melamed S, Lalush C, Elad T et al (2012) A bacterial reporter panel for the detection and classification of antibiotic substances. Microb Biotechnol 5:536–548.  https://doi.org/10.1111/j.1751-7915.2012.00333.xCrossRefPubMedPubMedCentralGoogle Scholar
  66. Melamed S, Naftaly S, Belkin S (2014) Improved detection of antibiotic compounds by bacterial reporter strains achieved by manipulations of membrane permeability and efflux capacity. Appl Microbiol Biotechnol 98:2267–2277CrossRefGoogle Scholar
  67. Merz D, Geyer M, Moss DA, Ache H-J (1996) Chlorophyll fluorescence biosensor for the detection of herbicides. Fresenius J Anal Chem 354:299–305.  https://doi.org/10.1007/s0021663540299CrossRefGoogle Scholar
  68. Michelini E, Cevenini L, Mezzanotte L et al (2008) A sensitive recombinant cell-based bioluminescent assay for detection of androgen-like compounds. Nat Protoc 3:1895–1902CrossRefGoogle Scholar
  69. Miller CA, Tan X, Wilson M et al (2010) Single plasmids expressing human steroid hormone receptors and a reporter gene for use in yeast signaling assays. Plasmid 63:73–78.  https://doi.org/10.1016/j.plasmid.2009.11.003CrossRefPubMedGoogle Scholar
  70. Minak-Bernero V, Bare RE, Haith CE, Grossman MJ (2004) Detection of alkanes, alcohols, and aldehydes using bioluminescence. Biotechnol Bioeng 87:170–177CrossRefGoogle Scholar
  71. Mulchandani A, Mulchandani P, Kaneva I, Chen W (1998) Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode. Anal Chem 70: 4140–4145.  https://doi.org/10.1021/ac9805201CrossRefPubMedGoogle Scholar
  72. Mulchandani A, Mulchandani P, Chen W et al (1999) Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorus hydrolase. Anal Chem 71:2246–2249CrossRefGoogle Scholar
  73. Mulchandani A, Chen W, Mulchandani P et al (2001a) Biosensors for direct determination of organophosphate pesticides. Biosens Bioelectron 16:225–230CrossRefGoogle Scholar
  74. Mulchandani P, Chen W, Mulchandani A (2001b) Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents. Environ Sci Technol 35:2562–2565CrossRefGoogle Scholar
  75. Mulchandani P, Chen W, Mulchandani A et al (2001c) Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosens Bioelectron 16:433–437CrossRefGoogle Scholar
  76. Naessens M, Leclerc JC, Tran-Minh C (2000) Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol Environ Saf 46:181–185.  https://doi.org/10.1006/eesa.1999.1904CrossRefPubMedGoogle Scholar
  77. Paitan Y, Biran I, Shechter N et al (2004) Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal Biochem 335:175–183.  https://doi.org/10.1016/j.ab.2004.08.032CrossRefPubMedGoogle Scholar
  78. Pearson CR (1982) Halogenated aromatics. In: Bock KJ, Daum KA, Merian E et al (eds) Anthropogenic compounds. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 89–116CrossRefGoogle Scholar
  79. Peña-Vázquez E, Maneiro E, Pérez-Conde C et al (2009) Microalgae fiber optic biosensors for herbicide monitoring using sol–gel technology. Biosens Bioelectron 24:3538–3543.  https://doi.org/10.1016/j.bios.2009.05.013CrossRefPubMedGoogle Scholar
  80. Peter J, Hutter W, Stöllnberger W, Hampel W (1996) Detection of chlorinated and brominated hydrocarbons by an ion sensitive whole cell biosensor. Biosens Bioelectron 11:1215–1219.  https://doi.org/10.1016/0956-5663(96)88086-9CrossRefGoogle Scholar
  81. Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392.  https://doi.org/10.1007/s10532-004-2413-6CrossRefPubMedGoogle Scholar
  82. Radhika V, Proikas-Cezanne T, Jayaraman M et al (2007) Chemical sensing of DNT by engineered olfactory yeast strain. Nat Chem Biol 3:325–330CrossRefGoogle Scholar
  83. Rainina EI, Efremenco EN, Varfolomeyev SD et al (1996) The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins. Biosens Bioelectron 11:991–1000.  https://doi.org/10.1016/0956-5663(96)87658-5CrossRefPubMedGoogle Scholar
  84. Ratajczak A, Geißdörfer W, Hillen W (1998) Expression of alkane hydroxylase from Acinetobacter sp. strain ADP1 is induced by a broad range of n-alkanes and requires the transcriptional activator AlkR. J Bacteriol 180:5822–5827PubMedPubMedCentralGoogle Scholar
  85. Reimer A, Yagur-Kroll S, Belkin S et al (2014) Escherchia coli ribose binding protein based bioreporters revisited. Sci Rep 4:5626CrossRefGoogle Scholar
  86. Ripp S, Nivens DE, Ahn Y et al (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853CrossRefGoogle Scholar
  87. Rosenstock L, Keifer M, Daniell WE et al (1991) Chronic central nervous system effects of acute organophosphate pesticide intoxication. Lancet 338:223–227CrossRefGoogle Scholar
  88. Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248CrossRefGoogle Scholar
  89. Rozen Y, Nejidatl A, Gartemann K-H, Belkin S (1999) Specific detection of p-chlorobenzoic acid by Escherichia coli bearing a plasmid-borne fcbA′::lux fusion. Chemosphere 38:633–641.  https://doi.org/10.1016/S0045-6535(98)00210-0CrossRefPubMedGoogle Scholar
  90. Sanborn M, Cole D, Sanin LH, Bassil K (2012) Systematic review of pesticide human health effects. Ontario College of Family Physicians. https://ocfp.on.ca/docs/pesticides-paper/2012-systematic-review-of-pesticide.pdf
  91. Sevilla E, Yuste L, Rojo F (2015) Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes. Microb Biotechnol 8:693–706.  https://doi.org/10.1111/1751-7915.12286CrossRefPubMedPubMedCentralGoogle Scholar
  92. Shemer B, Palevsky N, Yagur-Kroll S, Belkin S (2015) Genetically engineered microorganisms for the detection of explosives’ residues. Front Microbiol 6:1175CrossRefGoogle Scholar
  93. Shemer B, Koshet O, Yagur-Kroll S, Belkin S (2017) Microbial bioreporters of trace explosives. Curr Opin Biotechnol 45:113–119CrossRefGoogle Scholar
  94. Shiizaki K, Asai S, Ebata S et al (2010) Establishment of yeast reporter assay systems to detect ligands of thyroid hormone receptors α and β. Toxicol In Vitro 24:638–644.  https://doi.org/10.1016/j.tiv.2009.10.001CrossRefPubMedGoogle Scholar
  95. Smolander O-P, Ribeiro AS, Yli-Harja O, Karp M (2009) Identification of β-lactam antibiotics using bioluminescent Escherichia coli and a support vector machine classifier algorithm. Sens Actuators B Chem 141:604–609.  https://doi.org/10.1016/j.snb.2009.06.019CrossRefGoogle Scholar
  96. Sticher P, Jaspers MC, Stemmler K et al (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63:4053–4060PubMedPubMedCentralGoogle Scholar
  97. Sun Y, Zhao X, Zhang D et al (2017) New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site. Chemosphere 186:510–518.  https://doi.org/10.1016/j.chemosphere.2017.08.027CrossRefPubMedGoogle Scholar
  98. Tan J, Kan N, Wang W et al (2015) Construction of 2, 4, 6-trinitrotoluene biosensors with novel sensing elements from Escherichia coli K-12 MG1655. Cell Biochem Biophys 72:417–428CrossRefGoogle Scholar
  99. Tang X, Zhang T, Liang B et al (2014) Sensitive electrochemical microbial biosensor for p-nitrophenylorganophosphates based on electrode modified with cell surface-displayed organophosphorus hydrolase and ordered mesopore carbons. Biosens Bioelectron 60:137–142.  https://doi.org/10.1016/j.bios.2014.04.001CrossRefPubMedGoogle Scholar
  100. Tauber M, Rosen R, Belkin S (2001) Whole-cell biodetection of halogenated organic acids. Talanta 55:959–964CrossRefGoogle Scholar
  101. Tizzard AC, Lloyd-Jones G (2007) Bacterial oxygenases: in vivo enzyme biosensors for organic pollutants. Biosens Bioelectron 22:2400–2407.  https://doi.org/10.1016/j.bios.2006.08.027CrossRefPubMedGoogle Scholar
  102. Tsai M, O’Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486CrossRefGoogle Scholar
  103. U.S. Environmental Protection Agency (1972) Clean Water Act, 33 U.S.C §§ 1251et seq. https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf. Accessed 21 Jan 2019
  104. Valtonen SJ, Kurittu JS, Karp MT (2002) A luminescent Escherichia coli biosensor for the high throughput detection of β-lactams. J Biomol Screen 7:127–134CrossRefGoogle Scholar
  105. Védrine C, Leclerc J-C, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18:457–463.  https://doi.org/10.1016/S0956-5663(02)00157-4CrossRefPubMedGoogle Scholar
  106. Villatte F, Marcel V, Estrada-Mondaca S, Fournier D (1998) Engineering sensitive acetylcholinesterase for detection of organophosphate and carbamate insecticides. Biosens Bioelectron 13:157–164CrossRefGoogle Scholar
  107. Virolainen NE, Pikkemaat MG, Elferink JWA, Karp MT (2008) Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria. J Agric Food Chem 56:11065–11070.  https://doi.org/10.1021/jf801797zCrossRefPubMedGoogle Scholar
  108. Wilbur S, Wohlers D, Paikoff S et al (2008) ATSDR evaluation of health effects of benzene and relevance to public health. Toxicol Ind Health 24:263–398.  https://doi.org/10.1177/0748233708090910CrossRefPubMedGoogle Scholar
  109. Willardson BM, Wilkins JF, Rand TA et al (1998) Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol 64:1006–1012PubMedPubMedCentralGoogle Scholar
  110. Worsey MJ, Williams PA (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol 124:7–13PubMedPubMedCentralGoogle Scholar
  111. Wright A, Gustafsson J-A (1992) Glucocorticoid-specific gene activation by the intact human glucocorticoid receptor expressed in yeast. Glucocorticoid specificity depends on low level receptor expression. J Biol Chem 267:11191–11195PubMedGoogle Scholar
  112. Yagur-Kroll S, Lalush C, Rosen R et al (2014) Escherichia coli bioreporters for the detection of 2, 4-dinitrotoluene and 2, 4, 6-trinitrotoluene. Appl Microbiol Biotechnol 98:885–895CrossRefGoogle Scholar
  113. Yagur-Kroll S, Amiel E, Rosen R, Belkin S (2015) Detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene by an Escherichia coli bioreporter: performance enhancement by directed evolution. Appl Microbiol Biotechnol 99:7177–7188.  https://doi.org/10.1007/s00253-015-6607-0CrossRefPubMedGoogle Scholar
  114. Zeinoddini M, Khajeh K, Behzadian F et al (2010) Design and characterization of an aequorin-based bacterial biosensor for detection of toluene and related compounds. Photochem Photobiol 86:1071–1075CrossRefGoogle Scholar
  115. Zhang D, He Y, Wang Y et al (2012) Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills. Microb Biotechnol 5:87–97.  https://doi.org/10.1111/j.1751-7915.2011.00301.xCrossRefPubMedGoogle Scholar
  116. Zutz C, Wagener K, Yankova D et al (2017) A robust high-throughput fungal biosensor assay for the detection of estrogen activity. Steroids 126:57–65CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael

Section editors and affiliations

  • Isao Karube
    • 1
  • Sylvia Daunert
  • Gérald Thouand
    • 2
  1. 1.School of Bioscience and BiotechnologyTokyo University of TechnologyTokyoJapan
  2. 2.Technological InstituteUniversity of Nantes, CNRS GEPEALa Roche sur YonFrance

Personalised recommendations