Advertisement

Acoustic Biosensors for Cell Research

  • Samar DamiatiEmail author
Living reference work entry
  • 18 Downloads

Abstract

Drawing inspiration from nature and applying natural principles can support the continuous improvement of sensing technologies in various fields, such as medicine, pharmacy, and environmental applications. It is difficult to directly connect a sensing system to a complex biological system. Thus, finding a suitable technique that simplifies and interprets complicated biological information to generate readable signals is in high demand. Acoustic technology appears to be a promising sensing model. The monitoring of the biochemical processes or the quantification of a captured analyte can be performed utilizing acoustic wave devices that rely on gravimetric sensing of materials adsorbed onto the sensor surface. Considering nature as a toolkit that provides individual puzzle pieces that can be assembled carefully into a sensory system offers a rich source to build selective and sensitive biosensors. The natural toolbox includes biological components such as DNA, RNA, sugar, amino acids, proteins, and lipids, in addition to nonbiological components such as graphene, carbon nanotubes, and metals. These molecules can be assembled together onto piezoelectric substrates to enhance the functionality of fabricated acoustic devices. This chapter has classified acoustic biosensors into four classes for various cell applications. First, lipid membrane-based biosensors are biomimetic models constructed by natural biological materials to simplify the complexity of biological cell membranes and enable investigations of membrane proteins in a native-like environment. These bioarchitectures also offer a good opportunity to investigate the interactions of lipids and proteins under controlled conditions. Second, whole cell-based biosensors are fabricated to enable investigations of cellular behaviors such as cell adhesion and cell-substrate interactions. Third, detection biosensors are also attracting attention due to their high sensitivity, ability to track cells in real time without labeling, and ability to differentiate between viable and nonviable cells. Finally, recent advancements in the fabrication of acoustic biosensors have enabled cells themselves to act as biosensors to detect analytes. All designed acoustic platforms are aimed at studying the cell, the basic unit of life, from different perspectives. The facts discussed in this chapter are based on phenomena that cannot be visualized by the eye, such as cellular interactions, or factors present in such small quantities, but they can be heard by tracking their acoustic sounds.

References

  1. Ágnes Á, Miklós K, György K, Éva K (2017) Amphiphilic polymer layer – model cell membrane interaction studied by QCM and AFM. Eur Polym J 93:212–221CrossRefGoogle Scholar
  2. Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  3. Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14:623–631PubMedCrossRefPubMedCentralGoogle Scholar
  4. Andrä J, Böhling A, Gronewold TMA et al (2008) Surface acoustic wave biosensor as a tool to study the interactions of antimicrobial peptides with phospholipid and lipopolysaccharide model membranes. Langmuir 24:9148–9153PubMedCrossRefPubMedCentralGoogle Scholar
  5. Atay S, Piskin K, Ylmaz F et al (2016) Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors. Anal Methods 8:153–161CrossRefGoogle Scholar
  6. Avsar SY, Jackman JA, Kim MC et al (2017) Immobilization strategies for functional complement convertase assembly at lipid membrane interfaces. Langmuir 33(29):7332–7342CrossRefGoogle Scholar
  7. Bell A (2006) Sensors, motors, and tuning in the cochlea: interacting cells could form a surface acoustic wave resonator. J Bioinspiration Biomimetics 1:96–101CrossRefGoogle Scholar
  8. Bendas G, Borsig L (2012) Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol 2012:676731PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60(1):1–8PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bisoffi M, Hjelle B, Brown DC et al (2008) Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosens Bioelectron 23:1397–1403PubMedCrossRefPubMedCentralGoogle Scholar
  11. Braunhut SJ, McIntosh D, Vorotnikova E et al (2005) Detection of apoptosis and drug resistance of human breast cancer cells to taxane treatments using quartz crystal microbalance biosensor technology. Assay Drug Dev Technol 3(1):77–88PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bröker P, Lücke K, Perpeet M, Gronewold T (2012) A nanostructured SAW chip-based biosensor detecting cancer cells. Sens Actuat B Chem 165(1):1–6CrossRefGoogle Scholar
  13. Castellana E, Cremer P (2006) Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep 61(10):429–444CrossRefGoogle Scholar
  14. Chen JY, Penn LS, Xi J (2018) Quartz crystal microbalance: sensing cell-substrate adhesion and beyond. Biosens Bioelectron 99:593–602PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cho NJ, Frank CW, Kasemo B, Hook F (2010) Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat Protoc 5:1096–1106PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chronaki D, Stratiotis DI, Tsortos A et al (2016) Screening between normal and cancer human thyroid cells through comparative adhesion studies using the quartz crystal microbalance. Sens Biosens Res 11(Part 2):99–106Google Scholar
  17. Cremer PS, Boxer SG (1999) Formation and spreading of lipid bilayers on planar glass supports. J Phys Chem B 103:2554–2559CrossRefGoogle Scholar
  18. Czanderna AW, Lu C (1984) In: Lu C, Czanderna AW (eds) Applications of piezoelectric quartz crystal microbalances, vol 7. Elsevier, AmsterdamCrossRefGoogle Scholar
  19. Damiati S (2018) Can we rebuild the cell membrane? In: Artmann G, Artmann A, Zhubanova A, Digel I (eds) Biological, physical and technical basics of cell engineering. Springer, SingaporeGoogle Scholar
  20. Damiati S (2019) New opportunities for creating man-made bioarchitectures utilizing microfluidics. Biomed Microdevices 21:62PubMedCrossRefPubMedCentralGoogle Scholar
  21. Damiati S, Zayni S, Schrems A et al (2015a) Inspired and stabilized by nature: ribosomal synthesis of the human voltage gated ion channel (VDAC) into 2D-protein-tethered lipid interfaces. Biomater Sci 3:1406–1413PubMedCrossRefPubMedCentralGoogle Scholar
  22. Damiati S, Schrems A, Sinner EK et al (2015b) Probing peptide and protein insertion in a biomimetic S-layer supported lipid membranes platform. Int J Mol Sci 16:2824–2838PubMedPubMedCentralCrossRefGoogle Scholar
  23. Damiati S, Küpcü S, Peacock M et al (2017) Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosens Bioelectron 94:500–506PubMedCrossRefPubMedCentralGoogle Scholar
  24. Damiati S, Peacock M, Leonhardt S et al (2018a) Embedded disposable functionalized electrochemical biosensor with a 3D-printed flow-cell for detection of hepatic oval cells. Genes 9(2):89PubMedCentralCrossRefGoogle Scholar
  25. Damiati S, Mhanna R, Kodzius R, Ehmoser EK (2018b) Cell-free approaches in synthetic biology utilizing microfluidics. Genes 9(3):144PubMedCentralCrossRefGoogle Scholar
  26. Damiati S, Peacock M, Mhanna R et al (2018c) Bioinspired detection sensor based on functional nanostructures of S-proteins to target the folate receptors in breast cancer cells. Sens Actuat B Chem 267:224–230CrossRefGoogle Scholar
  27. Damiati S, Hersman C, Søpstad S et al (2019) Sensitivity comparison of macro- and micro-electrochemical biosensors for human chorionic gonadotropin (hCG) biomarker detection. IEEE Access 7:94048–94058CrossRefGoogle Scholar
  28. Da-Silva AC, Rodrigues R, Rosa L et al (2012) Acoustic detection of cell adhesion on a quartz crystal microbalance. Biotechnol Appl Biochem 59(6):411–419PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dey N, Ashour AS, Mohamed WS, Nguyen NG (2018) Acoustic wave technology. In: Acoustic sensors for biomedical applications. Springer, ChamGoogle Scholar
  30. Ding X, Li P, Lin SC et al (2013) Surface acoustic wave microfluidics. Lab Chip 13(18):3626–3649PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dobbins P (2007) Dolphin sonar-modelling a new receiver concept. J Bioinspiration Biomimetics 2:19–29CrossRefGoogle Scholar
  32. Dopico AM, Tigyi GJ (2007) A glance at the structural and functional diversity of membrane lipids. Methods Mol Biol 400:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  33. Drafts B (2001) Acoustic wave technology sensors. IEEE Trans Microw Theory Tech 49(4):795–802CrossRefGoogle Scholar
  34. Durmus N, Lin R, Kozberg M et al (2008) Acoustics based biosensors. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, BostonGoogle Scholar
  35. Eeman M, Deleu M (2010) From biological membranes to biomimetic model membranes. Biotechnol Agron Soc Environ 14(4):719–736Google Scholar
  36. Endo Y, Sawasaki T (2006) Cell-free expression systems for eukaryotic protein production. Curr Opin Biotechnol 17:373–380PubMedCrossRefPubMedCentralGoogle Scholar
  37. Ferrari V, Lucklum R (2004) Overview of Acoustic-Wave Microsensors. In: Arnau Vives A (eds) Piezoelectric Transducers and Applications. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-540-77508-9_2
  38. Fogel R, Limson J, Seshia AA (2016) Acoustic biosensors. Essays Biochem 60:101–110PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fohlerová Z, Skládal P, Turánek J (2007) Adhesion of eukaryotic cell lines on the gold surface modified with extracellular matrix proteins monitored by the piezoelectric sensor. Biosens Bioelectron 22(9–10):1896–1901PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fu Y, Luo Q, Nguyen JK et al (2017) Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog Mater Sci 89:31–91CrossRefGoogle Scholar
  41. Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27(11):2292–2301PubMedCrossRefPubMedCentralGoogle Scholar
  42. Glasmastar K, Larsson C, Hook F, Kasemo B (2002) Protein adsorption on supported phospholipid bilayers. J Colloid Interface Sci 246:40–47PubMedCrossRefPubMedCentralGoogle Scholar
  43. Grainger DW, Castner DG (2011) 3.1 Surface analysis and biointerfaces: Vacuum and ambient in situ techniques. In: Ducheyne P (eds) Comprehensive Biomaterials II. vol 3, 1–22, ElsevierGoogle Scholar
  44. Grate JW, Frye GC (1996) Acoustic wave sensors. In: Göpel W, Hesse J (eds) Sensors update. Wiley-VCH, WeinheimGoogle Scholar
  45. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gui Q, Lawson T, Shan S et al (2017) The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17:1623CrossRefGoogle Scholar
  47. Guidelli R, Becucci L (2012) 4 Electrochemistry of Biomimetic Membranes. In: Eliaz N. (eds) Applications of Electrochemistry and Nanotechnology in Biology and Medicine II. Modern Aspects of Electrochemistry, vol 53. Springer, Boston, MA.  https://doi.org/10.1007/978-1-4614-2137-5_4Google Scholar
  48. Gutiérrez JC, Amaro F, Martín-González A (2015) Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front Microbiol 6:48PubMedPubMedCentralGoogle Scholar
  49. Hardy GJ, Nayak R, Alam SM et al (2012) Biomimetic supported lipid bilayers with high cholesterol content formed by alpha-helical peptide-induced vesicle fusion. J Mater Chem 22:19506–19513PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hardy GJ, Nayak R, Zauscher S (2013) Model cell membranes: techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Curr Opin Colloid Interface Sci 18(5):448–458PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hasan A, Nurunnabi M, Morshed M et al (2014) Recent advances in application of biosensors in tissue engineering. Biomed Res Int 2014:307519PubMedPubMedCentralGoogle Scholar
  52. Haslam C, Damiati S, Whitley T et al (2018) Label-free sensors based on graphene field-effect transistors for the detection of human chorionic gonadotropin cancer risk biomarker. Diagnostics 8(1):5PubMedCentralCrossRefGoogle Scholar
  53. Hennig M, Neumann J, Wixforth A et al (2009) Dynamic patterns in a supported lipid bilayer driven by standing surface acoustic waves. Lab Chip 9:3050–3053PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hennig M, Wolff M, Neumann J et al (2011) DNA concentration modulation on supported lipid bilayers switched by surface acoustic waves. Langmuir 27:14721–14725PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hewa Peduru TM, Tannock GA, Mainwaring DE et al (2009) The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. J Virol Methods 162(1–2): 14–21CrossRefGoogle Scholar
  56. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136PubMedCrossRefPubMedCentralGoogle Scholar
  57. Howe E, Harding GA (2000) Comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor. Biosens Bioelectron 15:641–649PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hu Y, Rajan L, Schilling WP (1994) Ca2+ signaling in Sf9 insect cells and the functional expression of a rat brain M5 muscarinic receptor. Am J Phys (Cell Physiol) 266:C1736–C1743CrossRefGoogle Scholar
  59. Huang X, Bai Q, Hu J, Hou D (2017) A practical model of quartz crystal microbalance in actual applications. Sensors (Basel) 17(8):1785CrossRefGoogle Scholar
  60. Inci F, Celik U, Turken B et al (2015) Construction of P-glycoprotein incorporated tethered lipid bilayer membranes. Biochem Biophys Rep 2:115–122PubMedPubMedCentralGoogle Scholar
  61. Islam K, Damiati S, Sethi J, Suhail A, Pan G (2018) Development of a label-free immunosensor for clusterin detection as an Alzheimer’s biomarker. Sensors 18(1):308CrossRefGoogle Scholar
  62. Jackson A, Boutell J, Cooley N, He M (2004) Cell-free protein synthesis for proteomics. Brief Funct Genomic Proteomic 2:308–319PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kanazawa KK, Gordon JG II (1985) The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta 175:99–105CrossRefGoogle Scholar
  64. Kaniusas E (2015) Biomedical signals and sensors II – linking acoustic and optic biosignals and biomedical sensors. Springer, BerlinGoogle Scholar
  65. Kaspar M, Stadler H, Weiss T et al (2000) Thickness shear mode resonators (“mass sensitive devices”) in bioanalysis. Fresenius J Anal Chem 366:602–610PubMedCrossRefPubMedCentralGoogle Scholar
  66. Khalili AA, Ahmad MR (2015) A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci 16(8):18149–18184PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kilic A, Kok FN (2018) Peptide-functionalized supported lipid bilayers to construct cell membrane mimicking interfaces. Colloids Surf B Biointerfaces 176:18–26PubMedCrossRefPubMedCentralGoogle Scholar
  68. King WH (1964) Piezoelectric sorption detector. Anal Chem 36:1735–1739CrossRefGoogle Scholar
  69. Ko Ferrigno P (2016) Non-antibody protein-based biosensors. Essays Biochem 60(1):19–25PubMedCrossRefPubMedCentralGoogle Scholar
  70. Konradi R, Textor M, Reimhult E (2012) Using complementary acoustic and optical techniques for quantitative monitoring of biomolecular adsorption at interfaces. Biosensors 2:341–376PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kumar A (2000) Biosensors based on piezoelectric crystal detectors: theory and application. JOM-e, 52 (10). Available at: https://www.tms.org/pubs/journals/JOM/0010/Kumar/Kumar-0010.html. Accessed 25 June 2019
  72. Lec RM, Lewin PA (1999) Acoustic wave biosensors, engineering in medicine and biology society, 1998. In: Proceedings of the 20th annual international conference of the IEEE, vol 6, pp 2779–2784Google Scholar
  73. Lee CF, Yan TR, Wang TH (2012) Long-term monitoring of Caco-2 cell growth process using a QCM-cell system. Sens Actuat B Chem 166:165–171CrossRefGoogle Scholar
  74. Li F, Wang JH, Wang QM (2007) Monitoring cell adhesion by using thickness shear mode acoustic wave sensors. Biosens Bioelectron 23(1):42–50PubMedCrossRefPubMedCentralGoogle Scholar
  75. Li P, Mao Z, Zhangli Peng Z et al (2015) Acoustic separation of circulating tumor cells. PNAS 112(6):4970–4975PubMedCrossRefPubMedCentralGoogle Scholar
  76. Liu F, Li F, Nordin AN, Voiculescu I (2013) A novel cell-based hybrid acoustic wave biosensor with impedimetric sensing capabilities. Sensors 13:3039–3055PubMedCrossRefPubMedCentralGoogle Scholar
  77. Lord MS, Modin C, Foss M et al (2008) Extracellular matrix remodelling during cell adhesion monitored by the quartz crystal microbalance. Biomaterials 29(17):2581–2587PubMedCrossRefPubMedCentralGoogle Scholar
  78. Lu B, Smyth MR, Okennedy R (1996) Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. Analyst 121(3):R29–R32CrossRefGoogle Scholar
  79. Lu Y, Huskens J, Pang W, Duan X (2019) Hypersonic poration of supported lipid bilayers. Mater Chem Front 3:782–790CrossRefGoogle Scholar
  80. Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129PubMedCrossRefPubMedCentralGoogle Scholar
  81. Maglio O, Costanzo S, Cercola R et al (2017) A quartz crystal microbalance immunosensor for stem cell selection and extraction. Sensors 17:2747CrossRefGoogle Scholar
  82. Marsh D (1990) CRC handbook of lipid bilayers. CRC Press, Boca RatonGoogle Scholar
  83. Marx KA, Zhou T, Montrone A et al (2007) A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects. Anal Biochem 361(1):77–92PubMedCrossRefPubMedCentralGoogle Scholar
  84. Misawa N, Osaki T, Takeuchi S (2018) Membrane protein-based biosensors. J R Soc Interface 15:20170952PubMedPubMedCentralCrossRefGoogle Scholar
  85. Modin C, Stranne AL, Foss M et al (2006) QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces. Biomaterials 27:1346–1354PubMedCrossRefPubMedCentralGoogle Scholar
  86. Morgan D (1991) Surface-wave devices for signal processing. Elsevier, Amsterdam, p 152Google Scholar
  87. Neumann J, Hennig M, Wixforth A et al (2010) Transport, separation, and accumulation of proteins on supported lipid bilayers. Nano Lett 10:2903–2908PubMedCrossRefPubMedCentralGoogle Scholar
  88. Perez JA, Sosa-Hernandez JE, Hussain SM et al (2019) Bioinspired biomaterials and enzyme-based biosensors for point-of-care applications with reference to cancer and bio-imaging. Biocatal Agric Biotechnol 17:168–176CrossRefGoogle Scholar
  89. Pomorski TG, Nylander T, Cárdenas M (2014) Model cell membranes: discerning lipid and protein contributions in shaping the cell. Adv Colloid Interf Sci 205:207–220CrossRefGoogle Scholar
  90. Racz Z, Cole M, Gardner JW et al (2011) Cell-based surface acoustic wave resonant microsensor for biomolecular agent detection. In: 2011 16th international solid-state sensors, actuators and microsystems conference, TRANSDUCERS’11, pp 2168–2171Google Scholar
  91. Reimhult E, Höök F (2015) Design of surface modifications for nanoscale sensor applications. Sensors 15:1635–1675PubMedCrossRefPubMedCentralGoogle Scholar
  92. Reusch T, Schülein FJR, Nicolas JD et al (2014) Collective lipid bilayer dynamics excited by surface acoustic waves. Phys Rev Lett 113:118102PubMedCrossRefPubMedCentralGoogle Scholar
  93. Rocha-Gaso MI, March-Iborra C, Montoya-Baides A, Arnau-Vives A (2009) Surface generated acoustic wave biosensors for the detection of pathogens: a review. Sensors 9:5740–5769PubMedCrossRefPubMedCentralGoogle Scholar
  94. Rodahl M, Kasemo B (1996) Frequency and dissipation-factor responses to localized liquid deposits on a 18 QCM electrode. Sens Actuators B: Chem 37:111–116CrossRefGoogle Scholar
  95. Rodahl M, Höök F, Krozer A et al (1995) Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum 66:3924–3930CrossRefGoogle Scholar
  96. Saad N A, Zaaba S K, Zakaria A, et al (2014) Quartz Crystal Microbalance for Bacteria Application Review. 2nd International Conference on Electronic Design (ICED), Penang, 2014, pp. 455–460.  https://doi.org/10.1109/ICED.2014.7015849
  97. Saitakis M, Tsortos A, Gizeli E (2010) Probing the interaction of a membrane receptor with a surface-attached ligand using whole cells on acoustic biosensors. Biosens Bioelectron 25(7):1688–1693PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wa¨ gung du¨ nner Schichten und zur Mikrowa¨ gung. Z Physik 155:206–222CrossRefGoogle Scholar
  99. Schrems A, Larisch V, Dutter K, Stanetty C, Damiati S, Sleytr UB, Schuster B (2011) Triggered liposome fusion on proteinaceous S-layer lattices via europium-complex formation. Soft Matter 7(12):5514–5518CrossRefGoogle Scholar
  100. Schuster B (2018) S-layer protein-based biosensors. Biosensors 8:40PubMedCentralCrossRefGoogle Scholar
  101. Şeker Ş, Murat Elçin Y (2017) Quartz crystal microbalance–based biosensors. In: Biological and medical sensor technologies. CRC Press, Boca RatonGoogle Scholar
  102. Spector AA, Brownell WE, Popel AS (2003) Effect of outer hair cell piezoelectricity on high-frequency receptor potentials. J Acoust Soc Am 113:453–461PubMedCrossRefPubMedCentralGoogle Scholar
  103. Stroble JK, Stone RB, Watkins SE (2009) An overview of biomimetic sensor technology. Sens Rev 29(2):112–119CrossRefGoogle Scholar
  104. Tagaya M (2015) In situ QCM-D study of nano-bio interfaces with enhanced biocompatibility. Polym J 47:599–608CrossRefGoogle Scholar
  105. Tanaka M (2006) Polymer-supported membranes: physical models of cell surfaces. MRS Bull 31:513–520CrossRefGoogle Scholar
  106. Tigli O, Bivona L, Berg P, Zaghloul ME (2010) Fabrication and characterization of a surface-acoustic-wave biosensor in CMOS technology for cancer biomarker detection. IEEE Trans Biomed Circuits Syst 4(1):62–73PubMedCrossRefPubMedCentralGoogle Scholar
  107. Tombelli S, Minunni A, Mascini A (2005) Analytical applications of aptamers. Biosens Bioelectron 20(12):2424–2434PubMedCrossRefPubMedCentralGoogle Scholar
  108. Visvanathan K, Li T, Gianchandani YB (2012) A biopsy tool with integrated piezoceramic elements for needle tract cauterization and cauterization monitoring. Biomed Microdevices 14:55–65PubMedCrossRefPubMedCentralGoogle Scholar
  109. Walters RH, Jacobson KH, Pedersen JA, Murphy RM (2012) Elongation kinetics of polyglutamine peptide fibrils: a quartz crystal microbalance with dissipation study. J Mol Biol 421(2–3): 329–347PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wang R, Li Y (2013) Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosens Bioelectron 42(1):148–155PubMedCrossRefPubMedCentralGoogle Scholar
  111. Wang Z, Zhe J (2011) Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11:1280–1285PubMedCrossRefPubMedCentralGoogle Scholar
  112. Wang G, Dewilde AH, Zhang J et al (2011) A living cell quartz crystal microbalance biosensor for continuous monitoring of cytotoxic responses of macrophages to single-walled carbon nanotubes. Part Fibre Toxicol 8:4PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wang H, Wang L, Hu Q et al (2018) Rapid and sensitive detection of campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. J Food Protect 81(8):1321–1330CrossRefGoogle Scholar
  114. Westas E, Svanborg LM, Wallin P et al (2015) Using QCM-D to study the adhesion of human gingival fibroblasts on implant surfaces. J Biomed Mater Res A 103:3139–3147PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wink T, van Zuilen S, Bult A et al (1997) Self-assembled monolayers for biosensors. Analyst 122:43RCrossRefGoogle Scholar
  116. Wu M, Huang PH, Zhang R et al (2018) Circulating tumor cell phenotyping via high-throughput acoustic separation. Small 14(32):e1801131PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wu H, Zu H, Wang JHC, Wang QM (2019) A study of love wave acoustic biosensors monitoring the adhesion process of tendon stem cells (TSCs). Eur Biophys J 48:249–260PubMedCrossRefPubMedCentralGoogle Scholar
  118. Yilmaz E, Majidi D, Ozgur E, Denizli A (2015) Whole cell imprinting based Escherichia coli sensors: a study for SPR and QCM. Sens Actuat B Chem 209:714–721CrossRefGoogle Scholar
  119. Zhang S, Bai H, Luo J (2014) A recyclable chitosan-based QCM biosensor for sensitive and selective detection of breast cancer cells in real time. Analyst 139:6259PubMedCrossRefPubMedCentralGoogle Scholar
  120. Zhu X, Wang Z, Zhao A, Huang N et al (2014) Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation. Colloids Surf B Biointerfaces 116:459–464PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of ScienceKing Abdulaziz University (KAU)JeddahSaudi Arabia
  2. 2.Institute for Synthetic Bioarchitectures, Department of NanobiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
  3. 3.Division of Nanobiotechnology, Department of Protein Science, Science for Life LaboratorySchool of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of TechnologyStockholmSweden

Section editors and affiliations

  • Aldo Roda
    • 1
    • 2
  • Sylvia Daunert
  • Elisa Michelini
    • 3
    • 4
    • 5
  • Sylvain Martel
    • 6
  1. 1.Department of Chemistry “G. Ciamician”University of BolognaBolognaItaly
  2. 2.INBB, Istituto Nazionale di Biostrutture e BiosistemiRomeItaly
  3. 3.Department of Chemistry “G. Ciamician”University of BolognaBolognaItaly
  4. 4.INBB, Istituto Nazionale di Biostrutture e BiosistemiRomeItaly
  5. 5.Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR)BolognaItaly
  6. 6.NanoRobotics Laboratory, Department of Computer and Software Engineering, and Institute of Biomedical EngineeringÉcole Polytechnique de Montréal (EPM)MontréalCanada

Personalised recommendations