Advertisement

Biosensors of the Well-being of Cell Cultures

  • Karen Marie PolizziEmail author
Living reference work entry

Abstract

Genetically-encoded biosensors offer advantages over traditional analytical technologies in biological manufacturing. Various biosensor architectures can be employed based on activation of transcription, translation, or folding of a reporter. Such biosensors can be used in small volume, high throughput culture devices to provide a more complete picture of cellular physiology. In addition, because of their simple read out, genetically encoded biosensors can be employed for monitoring during production and offer the opportunity for increased measurement density. This chapter reviews current applications of biosensors to measure cellular health and well-being including designs for detecting the activation of cell stress responses as well as sensing of critical metabolites. Many of these designs have been demonstrated to be relevant to bioprocess engineering or cell line selection, but to date very few have been adopted by industry. In future, ensuring that biosensors function robustly under industrial conditions is a priority, as is designing systems that are compatible with industrial workflows. In the long term, engineering systems that move beyond sensing, to include the ability to adjust the environment of the culture based on signals, will allow biotechnology to fully capitalize on the advantages that genetically encoded biosensors can bring.

Keywords

Bioprocess engineering Bioreactor Biosynthesis Metabolism Cell stress response Recombinant protein production Metabolic engineering 

References

  1. Arias-Barreiro CR et al (2010) A bacterial biosensor for oxidative stress using the constitutively expressed redox-sensitive protein roGFP2. Sensors (Basel, Switzerland) 10:6290–6306.  https://doi.org/10.3390/s100706290CrossRefGoogle Scholar
  2. Aw R, McKay PF, Shattock RJ, Polizzi KM (2018) A systematic analysis of the expression of the anti-HIV VRC01 antibody in Pichia pastoris through signal peptide optimization. Protein Expr Purif 149:43–50.  https://doi.org/10.1016/j.pep.2018.03.013CrossRefPubMedPubMedCentralGoogle Scholar
  3. Banning C et al (2010) A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells. PLoS One 5:e9344.  https://doi.org/10.1371/journal.pone.0009344CrossRefPubMedPubMedCentralGoogle Scholar
  4. Behjousiar A, Kontoravdi C, Polizzi KM (2012) In situ monitoring of intracellular glucose and glutamine in CHO cell culture. PLoS One 7.  https://doi.org/10.1371/journal.pone.0034512PubMedPubMedCentralCrossRefGoogle Scholar
  5. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281PubMedCrossRefGoogle Scholar
  6. Bermejo E et al (2018) Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. J Biosci Bioeng 125:669–675.  https://doi.org/10.1016/j.jbiosc.2017.12.025CrossRefPubMedGoogle Scholar
  7. Bradley RW, Wang B (2015) Designer cell signal processing circuits for biotechnology. New Biotechnol 32:635–643CrossRefGoogle Scholar
  8. Brognaux A, Han SS, Sorensen SJ, Lebeau F, Thonart P, Delvigne F (2013a) A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors. Microb Cell Factories 12.  https://doi.org/10.1186/1475-2859-12-100PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brognaux A, Thonart P, Delvigne F, Neubauer P, Twizere JC, Francis F, Gorret N (2013b) Direct and indirect use of GFP whole cell biosensors for the assessment of bioprocess performances: design of milliliter scale-down bioreactors. Biotechnol Prog 29:48–59PubMedCrossRefGoogle Scholar
  10. Buschhaus JM, Humphries B, Luker KE, Luker GD (2018) A Caspase-3 reporter for fluorescence lifetime imaging of single-cell apoptosis. Cell 7:57CrossRefGoogle Scholar
  11. Cao H et al (2017) Systems-level understanding of ethanol-induced stresses and adaptation in E. coli. Sci Rep 7:44150PubMedPubMedCentralCrossRefGoogle Scholar
  12. Carlquist M et al (2012) Physiological heterogeneities in microbial populations and implications for physical stress tolerance. Microb Cell Factories 11.  https://doi.org/10.1186/1475-2859-11-94PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ceroni F, Algar R, Stan G-B, Ellis T (2015) Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 12:415PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen A, Leith M, Tu R, Tahim G, Sudra A, Bhargava S (2017) Effects of diluents on cell culture viability measured by automated cell counter. PLoS One 12:e0173375PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chiang JJH, Truong K (2005) Using co-cultures expressing fluorescence resonance energy transfer based protein biosensors to simultaneously image caspase-3 and Ca2+ signaling. Biotechnol Lett 27:1219–1227PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cilek MZ et al (2011) AHR, a novel acute hypoxia-response sequence, drives reporter gene expression under hypoxia in vitro and in vivo. Cell Biol Int 35:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  17. Constantinou A, Polizzi KM (2013) Opportunities for bioprocess monitoring using FRET biosensors. Biochem Soc Trans 41:1146–1151PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cost AL, Ringer P, Chrostek-Grashoff A, Grashoff C (2015) How to measure molecular forces in cells: a guide to evaluating genetically-encoded FRET-based tension sensors. Cell Mol Bioeng 8:96–105PubMedCrossRefPubMedCentralGoogle Scholar
  19. De Paepe B, Peters G, Coussement P, Maertens J, De Mey M (2017) Tailor-made transcriptional biosensors for optimizing microbial cell factories. J Ind Microbiol Biotechnol 44:623–645PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dekker L, Polizzi KM (2017) Sense and sensitivity in bioprocessing – detecting cellular metabolites with biosensors. Curr Opin Chem Biol 40:31–36PubMedCrossRefPubMedCentralGoogle Scholar
  21. Delvigne F, Goffin P (2014) Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol J 9:61–72PubMedCrossRefPubMedCentralGoogle Scholar
  22. Delvigne F, Boxus M, Ingels S, Thonart P (2009) Bioreactor mixing efficiency modulates the activity of a prpoS::GFP reporter gene in E. coli. Microb Cell Factories 8:15CrossRefGoogle Scholar
  23. Delvigne F et al (2011) Characterization of the response of GFP microbial biosensors sensitive to substrate limitation in scale-down bioreactors. Biochem Eng J 55:131–139CrossRefGoogle Scholar
  24. Demuth C, Varonier J, Jossen V, Eibl R, Eibl D (2016) Novel probes for pH and dissolved oxygen measurements in cultivations from millilitre to benchtop scale. Appl Microbiol Biotechnol 100:3853–3863PubMedCrossRefPubMedCentralGoogle Scholar
  25. Doucette J, Zhao Z, Geyer RJ, Barra MM, Balunas MJ, Zweifach A (2016) Flow cytometry enables multiplexed measurements of genetically encoded intramolecular FRET sensors suitable for screening. J Biomol Screen 21:535–547PubMedCrossRefPubMedCentralGoogle Scholar
  26. Du Z et al (2013) Non-invasive UPR monitoring system and its applications in CHO production cultures. Biotechnol Bioeng 110:2184–2194PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2008) Amperometric enzyme biosensors: past, present and future. IRBM 29:171–180CrossRefGoogle Scholar
  28. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818CrossRefGoogle Scholar
  29. Ermakova YG et al (2014) Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nat Commun 5:5222PubMedPubMedCentralCrossRefGoogle Scholar
  30. Feng J et al (2015) A general strategy to construct small molecule biosensors in eukaryotes. elife 4:e10606PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fosbrink M, Aye-Han NN, Cheong R, Levchenko A, Zhang J (2010) Visualization of JNK activity dynamics with a genetically encoded fluorescent biosensor. Proc Natl Acad Sci U S A 107:5459–5464PubMedPubMedCentralCrossRefGoogle Scholar
  32. Garcia JR, Cha HJ, Rao G, Marten MR, Bentley WE (2009) Microbial nar-GFP cell sensors reveal oxygen limitations in highly agitated and aerated laboratory-scale fermentors. Microb Cell Factories 8:15CrossRefGoogle Scholar
  33. Goers L, Kylilis N, Tomazou M, Wen KY, Freemont P, Polizzi K (2013) Engineering microbial biosensors. In: Harwood C, Wipat A (eds) Microbial synthetic biology. Methods in microbiology, vol 40. Academic, Oxford, pp 119–156Google Scholar
  34. Goers L, Ainsworth C, Goey CH, Kontoravdi C, Freemont PS, Polizzi KM (2017) Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production. Biotechnol Bioeng 114:1290–1300PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hendriks G et al (2012) The ToxTracker assay: novel GFP reporter systems that provide mechanistic insight into the genotoxic properties of chemicals. Toxicol Sci 125:285–298PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hoynes-O’Connor A, Shopera T, Hinman K, Creamer JP, Moon TS (2017) Enabling complex genetic circuits to respond to extrinsic environmental signals. Biotechnol Bioeng 114:1626–1631PubMedCrossRefPubMedCentralGoogle Scholar
  38. Jang S, Jang S, Xiu Y, Kang TJ, Lee S-H, Koffas MAG, Jung GY (2017) Development of artificial riboswitches for monitoring of naringenin in vivo. ACS Synth Biol 6:2077–2085PubMedCrossRefPubMedCentralGoogle Scholar
  39. Jayaraman M, Radhika V, Bamne MN, Ramos R, Briggs R, Dhanasekaran DN (2005) Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress. Biotechnol Prog 21:1373–1379PubMedCrossRefGoogle Scholar
  40. Kober L, Zehe C, Bode J (2012) Development of a novel ER stress based selection system for the isolation of highly productive clones. Biotechnol Bioeng 109:2599–2611PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kotova VY, Manukhov IV, Zavilgelskii GB (2010) Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress. Appl Biochem Microbiol 46:781–788CrossRefGoogle Scholar
  42. Krampe B, Al-Rubeai M (2010) Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies. Cytotechnology 62:175–188PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kuystermans D, Mohd A, Al-Rubeai M (2012) Automated flow cytometry for monitoring CHO cell cultures. Methods 56:358–365PubMedCrossRefGoogle Scholar
  44. Kuystermans D, Avesh M, Al-Rubeai M (2016) Online flow cytometry for monitoring apoptosis in mammalian cell cultures as an application for process analytical technology. Cytotechnology 68:399–408PubMedCrossRefGoogle Scholar
  45. Li CJ, Imanishi A, Komatsu N, Terai K, Amano M, Kaibuchi K, Matsuda M (2017a) A FRET biosensor for ROCK based on a consensus substrate sequence identified by KISS technology. Cell Struct Funct 42:1–13PubMedCrossRefGoogle Scholar
  46. Li H, Liang C, Chen W, Jin J-M, Tang S-Y, Tao Y (2017b) Monitoring in vivo metabolic flux with a designed whole-cell metabolite biosensor of shikimic acid. Biosens Bioelectron 98:457–465PubMedCrossRefGoogle Scholar
  47. Lim B, Gross CA (2011) Cellular response to heat shock and cold shock. In: Bacterial stress responses, 2nd edn. American Society of Microbiology, Washington, DCGoogle Scholar
  48. Lim CT, Zhou EH, Quek ST (2006) Mechanical models for living cells – a review. J Biomech 39:195–216PubMedCrossRefGoogle Scholar
  49. Liu JY, Qu RJ, Ogura M, Shibata T, Harada H, Hiraoka M (2005) Real-time imaging of hypoxia-inducible factor-1 activity in tumor xenografts. J Radiat Res 46:93–102PubMedCrossRefGoogle Scholar
  50. Liu D, Evans T, Zhang FZ (2015a) Applications and advances of metabolite biosensors for metabolic engineering. Metab Eng 31:35–43PubMedCrossRefPubMedCentralGoogle Scholar
  51. Liu YN et al (2015b) Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microb Cell Factories 14:121CrossRefGoogle Scholar
  52. Ma YJ, Hendershot LM (2001) The unfolding tale of the unfolded protein response. Cell 107:827–830CrossRefGoogle Scholar
  53. Ma TF, Chen YP, Guo JS, Wang W, Fang F (2018) Cellular analysis and detection using surface plasmon resonance imaging. TrAC Trends Anal Chem 103:102–109CrossRefGoogle Scholar
  54. Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J (2015) Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metab Eng 32:184–194PubMedCrossRefPubMedCentralGoogle Scholar
  55. Mahr R, von Boeselager RF, Wiechert J, Frunzke J (2016) Screening of an Escherichia coli promoter library for a phenylalanine biosensor. Appl Microbiol Biotechnol 100:6739–6753PubMedCrossRefPubMedCentralGoogle Scholar
  56. McLamore ES, Porterfield DM (2011) Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing. Chem Soc Rev 40:5308–5320PubMedCrossRefPubMedCentralGoogle Scholar
  57. Menolascina F et al (2014) In-vivo real-time control of protein expression from endogenous and synthetic gene networks. PLoS Comput Biol 10:e1003625–e1003625PubMedPubMedCentralCrossRefGoogle Scholar
  58. Merksamer PI, Trusina A, Papa FR (2008) Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell 135:933–947PubMedPubMedCentralCrossRefGoogle Scholar
  59. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195PubMedCrossRefPubMedCentralGoogle Scholar
  60. Milias-Argeitis A et al (2011) In silico feedback for in vivo regulation of a gene expression circuit. Nat Biotechnol 29:1114–1116PubMedPubMedCentralCrossRefGoogle Scholar
  61. Pais DAM, Carrondo MJT, Alves PM, Teixeira AP (2014) Towards real-time monitoring of therapeutic protein quality in mammalian cell processes. Curr Opin Biotechnol 30:161–167PubMedCrossRefPubMedCentralGoogle Scholar
  62. Passoth V, Cohn M, Schafer B, Hahn-Hagerdal B, Klinner U (2003) Analysis of the hypoxia-induced ADH2 promoter of the respiratory yeast Pichia stipitis reveals a new mechanism for sensing of oxygen limitation in yeast. Yeast 20:39–51PubMedCrossRefPubMedCentralGoogle Scholar
  63. Pokhilko A (2017) Monitoring of nutrient limitation in growing E. coli: a mathematical model of a ppGpp-based biosensor. BMC Syst Biol 11:106PubMedPubMedCentralCrossRefGoogle Scholar
  64. Potzkei J, Kunze M, Drepper T, Gensch T, Jaeger K-E, Büchs J (2012) Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor. BMC Biol 10:28PubMedPubMedCentralCrossRefGoogle Scholar
  65. Randers-Eichhorn L, Albano CR, Sipior J, Bentley WE, Rao G (1997) Online green fluorescent protein sensor with LED excitation. Biotechnol Bioeng 55:921–926PubMedCrossRefPubMedCentralGoogle Scholar
  66. Rogers JK, Church GM (2016) Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci U S A 113:2388–2393PubMedPubMedCentralCrossRefGoogle Scholar
  67. Rugbjerg P, Gence HJ, Jensen K, Sarup-Lytzen K, Sommer MOA (2016) Molecular buffers permit sensitivity tuning and inversion of riboswitch signals. ACS Synth Biol 5:632–638PubMedPubMedCentralCrossRefGoogle Scholar
  68. Scognamiglio V, Antonacci A, Lambreva MD, Litescu SC, Rea G (2015) Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors. Biosens Bioelectron 74:1076–1086PubMedCrossRefPubMedCentralGoogle Scholar
  69. Seefried L et al (2010) A small scale cell culture system to analyze mechanobiology using reporter gene constructs and polyurethan dishes. Eur Cells Mater 20:344–355CrossRefGoogle Scholar
  70. Shi S, Ang EL, Zhao H (2018) In vivo biosensors: mechanisms, development, and applications. J Ind Microbiol Biotechnol 45:491–516PubMedCrossRefGoogle Scholar
  71. Silberman M, Barac YD, Yahav H, Wolfovitz E, Einav S, Resnick N, Binah O (2009) Shear stress-induced transcriptional regulation via hybrid promoters as a potential tool for promoting angiogenesis. Angiogenesis 12:231–242PubMedCrossRefGoogle Scholar
  72. Skjoedt ML et al (2016) Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nat Chem Biol 12:951PubMedCrossRefGoogle Scholar
  73. Slomovic S, Pardee K, Collins JJ (2015) Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci U S A 112:14429–14435PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742PubMedCrossRefGoogle Scholar
  75. Sou SN, Sellick C, Lee K, Mason A, Kyriakopoulos S, Polizzi KM, Kontoravdi C (2015) How does mild hypothermia affect monoclonal antibody glycosylation? Biotechnol Bioeng 112:1165–1176PubMedCrossRefGoogle Scholar
  76. Tapsin S et al (2018) Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes. Nat Commun 9:1289PubMedPubMedCentralCrossRefGoogle Scholar
  77. Tielker D, Eichhof I, Jaeger KE, Ernst JF (2009) Flavin mononucleotide-based fluorescent protein as an oxygen-independent reporter in Candida albicans and Saccharomyces cerevisiae. Eukaryot Cell 8:913–915PubMedPubMedCentralCrossRefGoogle Scholar
  78. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505PubMedPubMedCentralCrossRefGoogle Scholar
  79. Varma S, Fendyur A, Box A, Voldman J (2017) Multiplexed cell-based sensors for assessing the impact of engineered systems and methods on cell health. Anal Chem 89:4663–4670PubMedCrossRefPubMedCentralGoogle Scholar
  80. Xiao Y, Jiang W, Zhang F (2017) Developing a genetically encoded, cross-species biosensor for detecting ammonium and regulating biosynthesis of cyanophycin. ACS Synth Biol 6:1807–1815PubMedCrossRefPubMedCentralGoogle Scholar
  81. Yang SJ, Yu HL, You YZ, Li XL, Jiang JX (2018a) Effective lactic acid production from waste paper using Streptococcus thermophilus at low enzyme loading assisted by Gleditsia saponin. Carbohydr Polym 200:122–127PubMedCrossRefPubMedCentralGoogle Scholar
  82. Yang T et al (2018b) A review of ratiometric electrochemical sensors: from design schemes to future prospects. Sensors Actuators B Chem 274:501–516CrossRefGoogle Scholar
  83. Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, Woodcock J (2014) Understanding pharmaceutical quality by design. AAPS J 16:771–783PubMedPubMedCentralCrossRefGoogle Scholar
  84. Zhang XD, Yang ST (2011) An online, non-invasive fluorescence probe for immobilized cell culture process development. Process Biochem 46:2030–2035CrossRefGoogle Scholar
  85. Zhang J et al (2013) Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat Commun 4:2157PubMedCrossRefGoogle Scholar
  86. Zhao L, Fu HY, Zhou WC, Hu WS (2015) Advances in process monitoring tools for cell culture bioprocesses. Eng Life Sci 15:459–468CrossRefGoogle Scholar
  87. Zheng H, Bi J, Krendel M, Loh SN (2014) Converting a binding protein into a biosensing conformational switch using protein fragment exchange. Biochemistry 53:5505–5514PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringImperial College Centre for Synthetic BiologyLondonUK

Section editors and affiliations

  • Shimshon Belkin
    • 1
  • Paul Freemont
    • 2
  1. 1.Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Faculty of MedicineImperial CollegeLondonUK

Personalised recommendations