Advertisement

Obesity pp 109-126 | Cite as

The Microbiota and Energy Balance

  • Gemma XifraEmail author
  • José Maria Moreno-Navarrete
  • José Manuel Fernández-Real
Reference work entry
Part of the Endocrinology book series (ENDOCR)

Abstract

Human gut microbiota consists of trillions of microorganisms which participate actively in host metabolism. Recent advances in bioinformatic and molecular biology (bacterial genome sequencing) have allowed for exploring in depth the relationship between gut microbiota and obesity-associated metabolic disturbances. A large number of studies in animal models and humans indicate that gut microbiota is linked with the onset and development of metabolic disorders, such as obesity. The abundance and the composition of the gut microbiota are conditioned by metabolic state of the host, including the degree of obesity and insulin sensitivity, and by exogenous factors, such as diet and medication. Experiments in rodents demonstrated that the microbiota can modulate both energy balance and energy stores through the production of specific molecules. In this chapter, we will summarize the existing evidence supporting the possible role of gut microbiota and energy balance in both – animal and human – models, the pathophysiological mechanisms underlying these effects and potential novel therapeutic targets in obesity.

Keywords

Gut microbiota Energy balance Obesity 

References

  1. Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3:559–72.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Azad MB, Bridgman SL, Becker AB, et al. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes. 2014;38:1290–8.CrossRefGoogle Scholar
  3. Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007;104:979–84.PubMedCrossRefGoogle Scholar
  4. Bailey LC, Forrest CB, Zhang P, et al. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014;68:1063–9.CrossRefGoogle Scholar
  5. van der Beek CM, Canfora EE, Lenaerts K, et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin Sci (Lond). 2016;130:2073–82.CrossRefGoogle Scholar
  6. Boursi B, Mamtani R, Haynes K, Yang YX. The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol. 2015;172:639–48.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bressa C, Bailén-Andrino M, Pérez-Santiago J, et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One. 2017;12:e0171352.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Butaye P, Devriese L, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev. 2003;16:175–88.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Byrne CS, Chambers ES, Alhabeeb H, et al. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am J Clin Nutr. 2016;104:5–14.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11:577–91.PubMedCrossRefGoogle Scholar
  11. Carvalho BM, Guadagnini D, Tsukumo DM, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55:2823–34.PubMedCrossRefGoogle Scholar
  12. Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc. 2015;74:328–36.PubMedCrossRefGoogle Scholar
  13. Chevalier C, Stojanović O, Colin DJ, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163:1360–74.PubMedCrossRefGoogle Scholar
  14. Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.PubMedCrossRefGoogle Scholar
  16. Cotillard A, Kennedy SP, Kong LC, et al. ANR MicroObes consortium. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8.PubMedCrossRefGoogle Scholar
  17. Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21.PubMedPubMedCentralCrossRefGoogle Scholar
  18. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.PubMedCrossRefGoogle Scholar
  19. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. De La Serre CB, Ellis CL, Lee J, et al. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010;299:G440–8.CrossRefGoogle Scholar
  21. Devaraj S, Hemarajata P, Versalovic J. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem. 2013;59:617–28.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5.PubMedCrossRefGoogle Scholar
  23. Eckert JK, Kim YJ, Kim JI, et al. The crystal structure of lipopolysaccharide binding protein reveals the location of a frequent mutation that impairs innate immunity. Immunity. 2013;39:647–60.PubMedCrossRefGoogle Scholar
  24. Fugmann M, Breier M, Rottenkolber M, et al. The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Sci Rep. 2015;5:13212.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gavaldà-Navarro A, Moreno-Navarrete JM, Quesada-López T, et al. Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans. Diabetologia. 2016;59:2208–18.PubMedCrossRefGoogle Scholar
  26. Goffredo M, Mass K, Parks EJ, et al. Role of gut microbiota and short chain fatty acids in modulating energy harvest and fat partitioning in youth. J Clin Endocrinol Metab. 2016;101:4367–76.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hallam MC, Barile D, Meyrand M, et al. Maternal high-protein or high prebiotic fiber diets affect maternal milk composition and gut microbiota in rat dams and their offspring. Obesity. 2014;22:2344–51.PubMedCrossRefGoogle Scholar
  28. Hanatani S, Motoshima H, Takaki Y, et al. Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-ay mice. J Clin Biochem Nutr. 2016;59:207–14.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Haro C, Montes-Borrego M, Rangel-Zúñiga OA, et al. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J Clin Endocrinol Metab. 2016;101:233–42.PubMedCrossRefGoogle Scholar
  30. Hill JO. Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev. 2006;27:750–61.PubMedCrossRefGoogle Scholar
  31. Hu J, Kyrou I, Tan BK, et al. Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via GPR43 in brown adipocytes. Endocrinology. 2016;157:1881–94.PubMedCrossRefGoogle Scholar
  32. Jeffery IB, O’Toole PW. Diet-microbiota interactions and their implications for healthy living. Forum Nutr. 2013;5:234–52.Google Scholar
  33. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94:58–65.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.PubMedCrossRefGoogle Scholar
  35. Korem T, Zeevi D, Suez J, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science. 2015;349:1101–6.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Korpela K, Flint HJ, Johnstone AM, et al. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS One. 2014;9:e90702.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kuhle S, Tong OS, Woolcott CG. Association between caesarean section and childhood obesity: a systematic review and meta-analysis. Obes Rev. 2015;16:295–303.PubMedCrossRefGoogle Scholar
  38. Kumar H, Laiho A, Lundelin K, et al. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. MBio. 2014;5:e02113–4.PubMedPubMedCentralGoogle Scholar
  39. Lassenius MI, Pietiläinen KH, Kaartinen K, et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care. 2011;34:1809–15.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.PubMedCrossRefGoogle Scholar
  41. Ley RE, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Lim MY, Rho M, Song YM, et al. Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet. Sci Rep. 2014;4:7348.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Liu X, Lu L, Yao P, et al. Lipopolysaccharide binding protein, obesity status and incidence of metabolic syndrome: a prospective study among middle-aged and older Chinese. Diabetologia. 2014;57:1834–41.PubMedCrossRefGoogle Scholar
  44. Lu Y, Fan C, Li P, et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep. 2016;6:37589.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Martin R, Nauta AJ, Ben Amor K, et al. Early life: gut microbiota and immune development in infancy. Benefic Microbes. 2010;1:367–82.CrossRefGoogle Scholar
  46. Martinez KB, Leone V, Chang EB. Western diets, gut dysbiosis, and metabolic diseases: are they linked? Gut Microbes. 2017;6:1–13.Google Scholar
  47. Maurer AD, Eller LK, Hallam MC, et al. Consumption of diets high in prebiotic fiber or protein during growth influences the response to a high fat and sucrose diet in adulthood in rats. Nutr Metab. 2010;7:77.CrossRefGoogle Scholar
  48. Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–41.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Moreno-Navarrete JM, Fernández-Real JM. The possible role of antimicrobial proteins in obesity-associated immunologic alterations. Expert Rev Clin Immunol. 2014;10:855–66.PubMedCrossRefGoogle Scholar
  50. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium Difficile. N Engl J Med. 2013;368:407–15.CrossRefGoogle Scholar
  51. O’Sullivan O, Cronin O, Clarke SF, et al. Exercise and the microbiota. Gut Microbes. 2015;6:131–6.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Parks BW, Nam E, Org E, et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 2013;17:141–52.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.PubMedCrossRefGoogle Scholar
  54. Petriz BA, Castro AP, Almeida JA, et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics. 2014;15:511.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–13.PubMedCrossRefGoogle Scholar
  56. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.PubMedCrossRefGoogle Scholar
  57. Ravussin Y, Koren O, Spor A, et al. Response of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring). 2012;20:736–47.CrossRefGoogle Scholar
  58. Reijnders D, Goossens GH, Hermes GD, et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 2016;24:63–74.PubMedCrossRefGoogle Scholar
  59. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26:493–501.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Saari A, Virta LJ, Sankilampi U, et al. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics. 2015;135:617–26.PubMedCrossRefGoogle Scholar
  63. Saha DC, Reimer RA. Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression. Nutr Res. 2014;34:789–96.PubMedCrossRefGoogle Scholar
  64. Sahuri-Arisoylu M, Brody LP, Parkinson JR, et al. Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. Int J Obes. 2016;40:955–63.CrossRefGoogle Scholar
  65. Salminen S, Gibson GR, McCartney AL, et al. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut. 2004;53:1388–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Serino M, Luche E, Gres S, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61:543–53.PubMedCrossRefGoogle Scholar
  67. Shirouchi B, Nagao K, Umegatani M, et al. Probiotic Lactobacillus gasseri SBT2055 improves glucose tolerance and reduces body weight gain in rats by stimulating energy expenditure. Br J Nutr. 2016;16:451–8.CrossRefGoogle Scholar
  68. Simoes CD, Maukonen J, Kaprio J, et al. Habitual dietary intake is associated with the stool microbiota composition of Finnish monozygotic twins. J Nutr. 2013;143:417–23.PubMedCrossRefGoogle Scholar
  69. Smaill FM, Grivell RM. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst Rev. 2014;10:CD007482.Google Scholar
  70. Sommer F, Ståhlman M, Ilkayeva O, et al. The gut microbiota modulates energy metabolism in the hibernating brown bear ursus arctos. Cell Rep. 2016;14:1655–61.PubMedCrossRefGoogle Scholar
  71. Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. MBio. 2016;7:4.CrossRefGoogle Scholar
  72. Taylor JH, Gordon WS. Growth-promoting activity for pigs of inactivated penicillin. Nature. 1955;176:312–3.PubMedCrossRefGoogle Scholar
  73. Tilves CM, Zmuda JM, Kuipers AL, et al. Association of lipopolysaccharide-binding protein with aging-related adiposity change and prediabetes among African ancestry men. Diabetes Care. 2016;39:385–91.PubMedCrossRefGoogle Scholar
  74. Trasande L, Blustein J, Liu M, et al. Infant antibiotic exposures and early-life body mass. Int J Obes. 2013;37:16–23.CrossRefGoogle Scholar
  75. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.PubMedCrossRefGoogle Scholar
  76. Turta O, Rautava S. Antibiotics, obesity and the link to microbes – what are we doing to our children? BMC Med. 2016;14:57.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Tyakht AV, Kostryukova ES, Popenko AS, et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun. 2013;4:2469.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Verani JR, McGee L, Schrag SJ. Prevention of perinatal group B streptococcal disease–revised guidelines from CDC, 2010. MMWR Recomm Rep. 2010;59:1–32.PubMedGoogle Scholar
  79. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Xiao S, Fei N, Pang X, et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol. 2014;87:357–67.PubMedCrossRefGoogle Scholar
  81. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Zeissig S, Blumberg RS. Life at the beginning: perturbation of themicrobiota by antibiotics in early life and its role in health and disease. Nat Immunol. 2014;15:307–10.PubMedCrossRefGoogle Scholar
  83. Zhang C, Zhang M, Wang S, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4:232–41.PubMedCrossRefGoogle Scholar
  84. Zhang J, Guo Z, Lim AA, et al. Mongolians core gut microbiota and its correlation with seasonal dietary changes. Sci Rep. 2014;4:5001.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Zimmer JA, Lange B, Frick JS, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;66:53–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gemma Xifra
    • 1
    • 2
    Email author
  • José Maria Moreno-Navarrete
    • 1
    • 2
  • José Manuel Fernández-Real
    • 1
    • 2
  1. 1.Unit of Diabetes, Endocrinology and NutritionBiomedical Research Institute (IDIBGI), Hospital ‘Dr. Josep Trueta’ of GironaGironaSpain
  2. 2.CIBERobn, Fisiopatología de la Obesidad y NutritionGironaSpain

Personalised recommendations