Quality Control of 3D Printed Resorbable Implants: The 3D Printed Airway Splint Example

  • Scott J. HollisterEmail author
  • Sarah Jo Crotts
  • Harsha Ramaraju
  • Colleen L. Flanagan
  • David A. Zopf
  • Robert J. Morrison
  • Andrea Les
  • Richard G. Ohye
  • Glenn E. Green
Reference work entry
Part of the Reference Series in Biomedical Engineering book series (RSBE)


3D printing combined with design using patient image data has enabled the development of patient-specific devices. This is especially true for smaller commercial entities and academic groups due to the lower barriers for 3D printing as a manufacturing method. Such patient-specific devices can significantly advance patient care but also face significant hurdles to ensure quality since (1) the devices are built in small lots for specific niche patient markets, (2) there is inherent variability in design parameters to match specific patient anatomy and function, and (3) nontraditional groups now have the capability to readily manufacture medical devices. Following the design control paradigm with specific attention to 3D printing idiosyncrasies is one path to address quality issues in patient-specific design. We present in this chapter an example of a design control approach for quality control of 3D patient-specific devices using a recently developed airway splint as a paradigmatic example for small lot 3D printed patient-specific devices.



Studies reported in the chapter on the airway splint were supported by the National Institutes of Health through NIH/NIHCD R21HD076370, NIH/NIHCD R01HD086201, and NIH T32DC005356. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. Boogaard R, Huijsmans SH, Pijnenburg MW et al (2005) Tracheomalacia and bronchomalacia in children: incidence and patient characteristics. Chest 128(5):3391–3397CrossRefPubMedGoogle Scholar
  2. Bucher U, Reid L (1961) Development of the intrasegmental bronchial tree: the pattern of branching and development of cartilage at various stages of intra-uterine life. Thorax 16:207–218CrossRefPubMedPubMedCentralGoogle Scholar
  3. Constantino ML, Bagnoli P, Dini G, Fiore GB, Soncini M, Corno C, Acocella F, Colombi R (2004) A numerical and experimental study of compliance and collapsibility of preterm lamb tracheae. J Biomech 37:1837–1847CrossRefGoogle Scholar
  4. Doras KS, Wolfson MR, Searls RL, Hilfer SR, Shaffer TH (1991) Developmental changes in tracheal structure. Pediatr Res 30:170–175CrossRefGoogle Scholar
  5. Duda GN, Grainger DW, Frisk ML, Bruckner-Tuderman L, Carr A, Dirnagl U, Einhaupl KM, Gottschalk S, Gruskin E, Huber C, June CH, Mooney DJ, Rietschel ET, Schutte G, Seeger W, Stevens MM, Urban R, Veldman A, Wess G, Volk HD (2014) Changing the mindset in life sciences toward translation: a consensus. Sci Transl Med 6:264cm12CrossRefPubMedGoogle Scholar
  6. Fraga JC, Jennings RW, Kim PC (2016) Pediatric tracheomalacia. Semin Pediatr Surg 25:156–164CrossRefPubMedGoogle Scholar
  7. Hollister SJ (2017) Paediatric devices that grow up. Nat Biomed Eng 1:777–778CrossRefGoogle Scholar
  8. Hollister SJ, Flanagan CL, Zopf DA, Morrison RJ, Nasser H, Patel JJ, Ebramzadeh E, Sangiorgio SN, Wheeler MB, Green GE (2015) Design control for clinical translation of 3D printed modular scaffolds. Ann Biomed Eng 43:774–786CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hollister SJ, Flanagan CL, Morrison RJ, Patel JJ, Wheeler MB, Edwards SP, Green GE (2017a) Integrating image-based design and 3D biomaterial printing to create patient specific devices within a design control framework for clinical translation. ACS Biomater Sci Eng 2:1827–1836CrossRefGoogle Scholar
  10. Hollister SJ, Hollister MP, Hollister SK (2017b) Computational modeling of airway instability and collapse in tracheomalacia. Respir Res 18:62–69CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hysinger EB, Panitch HB (2016) Paediatric tracheomalacia. Paediatr Respir Rev 17:9–15PubMedGoogle Scholar
  12. Javia L, Harris MA (2016) Fuller 5. Rings, slings, and other tracheal disorders in the neonate. Semin Fetal Neonatal Med 21:277–284CrossRefPubMedGoogle Scholar
  13. Khanafer K, Duprey A, Zainal M, Schlicht M et al (2011) Determination of the elastic modulus of ascending thoracic aortic aneurysm at different ranges of pressure using uniaxial tensile testing. J Thorac Cardiovasc Surg 142:682–686CrossRefPubMedGoogle Scholar
  14. Kida K, Thurlbeck WM (1981) Tracheal banding in weanling rats diminishes lung growth and alters lung architecture. Pediatr Res 15:269–277CrossRefPubMedGoogle Scholar
  15. Kim K, Jeong CG, Hollister SJ (2008) Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging. Acta Biomater 4:783–790CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kugler C, Stanzel F (2014) Tracheomalacia. Thorac Surg Clin 24:51–58CrossRefPubMedGoogle Scholar
  17. Lam CXF, Teoh SH, Hutmacher DW (2007) Comparison of the degradation of polycaprolactone and polycaprolactone-(b-tricalcium phosphate) scaffolds in alkaline medium. Polym Int 56:718–728CrossRefGoogle Scholar
  18. Lam CXF, Savalani MM, Teoh SH, Hutmacher DW (2008a) Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater 3:034108CrossRefPubMedGoogle Scholar
  19. Lam CXF, Hutmacher DW, Schantz J-T, Woodruff MA, Teoh SH (2008b) Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res Part A 90:906–919Google Scholar
  20. Les AS, Flanagan CL, Premanathan A, Hollister SJ, Ohye RG, Green GE (2018) A novel, patient-specific, 3D printed, bioresorbable external airway splint for the treatment of life-threatening tracheobronchomalacia, American Academy of Thoracic Surgeons 98th Annual Meeting, San Diego, 28 Apr–1 MayGoogle Scholar
  21. Morrison RJ, Hollister SJ, Niedner MF, Ghadimi Mahani G, Park AH, Mehta DK, Ohye RG, Green GE (2015) Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med 7:285–296CrossRefGoogle Scholar
  22. Nalwa SS, Hartig GK, Connonr NP, Warner T, Thielman MJ (2001) Evaluation of poly-l-lactic acid and polyglycolic acid resorbable stents for repair of tracheomalacia in a porcine model. Ann Otol Rhinol Layrngology 110:993–999CrossRefGoogle Scholar
  23. Penn RB, Wolfson MR, Shaffer TH (1989) Developmental differences in tracheal cartilage mechanics. Pediatr Res 26:429–433CrossRefPubMedGoogle Scholar
  24. Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, Gainnobile WV (2015) 3D-printed bioresorbable scaffold for periodontal repair. J Dent Res 94:153S–157SCrossRefPubMedGoogle Scholar
  25. Shi HC, Deng WJ, Pei C et al (2009) Biomechanical properties of adult-excised porcine trachea for tracheal xenotransplantation. Xenotransplantation 16:181–186CrossRefPubMedGoogle Scholar
  26. Vinograd I, Filler RM, England SJ, Smith C, Poenaru D, Bahoric A, Kent G (1987) Tracheomalacia: an experimental animal model for a new surgical approach. J Surg Res 42:597–604CrossRefPubMedGoogle Scholar
  27. Volk HD, Stevens MM, Mooney DJ, Grainger DW, Duda GN (2015) Key elements for nourishing the translational research environment. Sci Transl Med 8:282cm2CrossRefGoogle Scholar
  28. Wright A, Ardran GM, Stell PM (1981) Does tracheostomy in children retard the growth of trachea or larynx? Clin Otolaryngol 6:91–96CrossRefPubMedGoogle Scholar
  29. Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE (2013) Bioresorbable three-dimensional printed airway splint. New Engl J Med 368:2043–2045CrossRefPubMedGoogle Scholar
  30. Zopf DA, Flanagan CL, Wheeler M, Hollister SJ, Green GE (2014) Treatment of severe porcine tracheomalacia with a 3-dimensionally printed, bioresorbable, external airway splint. JAMA Otolaryngol Head Neck Surg 140:66–71CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Scott J. Hollister
    • 1
    Email author
  • Sarah Jo Crotts
    • 1
  • Harsha Ramaraju
    • 1
  • Colleen L. Flanagan
    • 2
  • David A. Zopf
    • 3
  • Robert J. Morrison
    • 3
  • Andrea Les
    • 3
  • Richard G. Ohye
    • 4
    • 5
  • Glenn E. Green
    • 3
  1. 1.Center for 3D Medical Fabrication and Walter H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.Department of Biomedical EngineeringThe University of MichiganAnn ArborUSA
  3. 3.Department of Otolaryngology Head and Neck SurgeryThe University of MichiganAnn ArborUSA
  4. 4.Department of Cardiac SurgeryThe University of MichiganAnn ArborUSA
  5. 5.Division of Cardiology, Department of PediatricsAnn ArborUSA

Personalised recommendations