Advertisement

Laser-Based Cell Printing

  • Lothar Koch
  • Andrea Deiwick
  • Boris Chichkov
Reference work entry
Part of the Reference Series in Biomedical Engineering book series (RSBE)

Abstract

The development of reproducible well-defined 3D cell models is a key challenge for the future progress in tissue engineering. The structural dimensions in natural tissue are significantly lower than 100 μm. Thus, the ability to precisely position different cells in complex 3D patterns is of essential importance, even if it is not fully determined which precision or resolution is really required.

This chapter discusses laser-based techniques for printing living cells in two- or three-dimensional patterns. One method known as laser-guided direct writing has been used to position individual cells in a cell medium bath by applying the laser optical tweezer technique.

A more common method applies the laser-induced forward transfer (LIFT) for cell printing. For this method, many different designations are used like biological laser printing (BioLP), laser-assisted bioprinting (LAB, LaBP), or matrix-assisted pulsed laser evaporation - direct write (MAPLE-DW). There are also some technical differences in the realization of cell printing with this method that are discussed in this chapter. Applications like printing of multicellular arrays, stem cell grafts, and tissue as well as in situ printing will be presented.

Notes

Acknowledgments

The authors acknowledge the financial support from Deutsche Forschungsgemeinschaft (DFG), the Cluster of Excellence REBIRTH, and project Biofabrication for NIFE, funded by State of Lower Saxony and Volkswagenstiftung.

References

  1. Akeson A, Herman A, Wiginton D, Greenberg J (2010) Endothelial cell activation in a VEGF-a gradient: relevance to cell fate decisions. Microvasc Res 80:65CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB (2004) Application of laser printing to mammalian cells. Thin Solid Films 453–454:383–387CrossRefGoogle Scholar
  3. Barron JA, Young HD, Dlott DD, Darfler MM, Krizman DB, Ringeisen BR (2005a) Printing of protein microarrays via a capillary-free fluid jetting mechanism. Proteomics 5(16):4138–4144CrossRefPubMedGoogle Scholar
  4. Barron JA, Krizman DB, Ringeisen BR (2005b) Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng 33(2):121–130CrossRefPubMedGoogle Scholar
  5. Baum M, Kim H, Alexeev I, Piqué A, Schmidt M (2013) Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers. Appl Phys A 111(3):799–805.  https://doi.org/10.1007/s00339-013-7646-yCrossRefGoogle Scholar
  6. Bigelow RLH, Jen EY, Delehedde M, Chari NS, McDonnell TJ (2005) Sonic hedgehog induces epidermal growth factor dependent matrix infiltration in HaCaT keratinocytes. J Invest Dermatol 124:457CrossRefPubMedGoogle Scholar
  7. Brown MS, Kattamis NT, Arnold CB (2010) Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer. J Appl Phys 107:083103CrossRefGoogle Scholar
  8. Brown MS, Brasz CF, Ventikos Y, Arnold CB (2012) Impulsively actuated jets from thin liquid films for high resolution printing applications. J Fluid Mech 709:341–370.  https://doi.org/10.1017/jfm.2012.337CrossRefGoogle Scholar
  9. Catros S, Guillemot F, Nandakumar A, Ziane S, Moroni L, Habibovic P, van Blitterswijk C, Rousseau B, Chassande O, Amédée J, Fricain J-C (2012) Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng Part C Methods 18(1):62–70CrossRefPubMedGoogle Scholar
  10. Clause KC, Liu LJ, Tobita K (2010) Directed stem cell differentiation: the role of physical forces. Cell Commun Adhes 17(2):48–54CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dinca V, Ranella A, Popescu A, Dinescu M, Farsari M, Fotakis C (2007) Parameters optimization for biological molecules patterning using 248-nm ultrafast lasers. Appl Surf Sci 254:1164–1168CrossRefGoogle Scholar
  12. Dinca V, Farsari M, Kafetzopoulos D, Popescu A, Dinescu M, Fotakis C (2008) Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers. Thin Solid Films 516:6504–6511CrossRefGoogle Scholar
  13. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673CrossRefPubMedPubMedCentralGoogle Scholar
  14. Duocastella M, Fernández-Pradas JM, Morenza JL, Serra P (2010a) Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study. Thin Solid Films 518:5321–5325CrossRefGoogle Scholar
  15. Duocastella M, Patrascioiu A, Fernández-Pradas JM, Morenza JL, Serra P (2010b) Film-free laser forward printing of transparent and weakly absorbing liquids. Opt Express 18(21):21815–21825CrossRefPubMedGoogle Scholar
  16. Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JMS (2009) High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 27(6):342CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, Gruene M, Toelk A, Wang W, Mark P, Wang F, Chichkov B, Li W, Steinhoff G (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230CrossRefGoogle Scholar
  18. Gruene M, Unger C, Koch L, Deiwick A, Chichkov B (2011a) Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting. Biomed Eng Online 10:19CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N, Bernemann I, Glasmacher B, Chichkov B (2011b) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 17:79–87CrossRefPubMedGoogle Scholar
  20. Gruene M, Pflaum M, Deiwick A, Koch L, Schlie S, Unger C, Wilhelmi M, Haverich A, Chichkov B (2011c) Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication 3:015005CrossRefPubMedGoogle Scholar
  21. Gruene M, Pflaum M, Hess C, Diamantouros S, Schlie S, Deiwick A, Koch L, Wilhelmi M, Jockenhoevel S, Haverich A, Chichkov B (2011d) Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng Part C Methods 17(10):973–982CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047PubMedGoogle Scholar
  23. Hon KKB, Li L, Hutchings IM (2008) Direct writing technology-advances and developments. CIRP Ann 57:601–620CrossRefGoogle Scholar
  24. Hopp B, Smausz T, Kresz N, Barna N, Bor Z, Kolozsvari L, Chrisey DB, Szabo A, Nogradi A (2005) Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng 11(11-12):1817–1823CrossRefPubMedGoogle Scholar
  25. Hui TY, Cheung KMC, Cheung WL, Chan D, Chan BP (2008) In Vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials 29:3201CrossRefPubMedGoogle Scholar
  26. Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amédée J, Fricain J-C, Catros S (2010) In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2:014101CrossRefPubMedGoogle Scholar
  27. Klopsch C, Gäbel R, Kaminski A, Mark P, Wang W, Toelk A, Delyagina E, Kleiner G, Koch L, Chichkov B, Mela P, Jockenhoevel S, Ma N, Steinhoff G (2012) Spray- and laser-assisted biomaterial processing for fast and efficient autologous cell-plus-matrix tissue engineering. J Tissue Eng Regen Med 9(12):E177–E190.  https://doi.org/10.1002/term.1657 Epub 2012 Dec 4 (2015)CrossRefPubMedGoogle Scholar
  28. Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, Polchow B, Reimers K, Stoelting S, Ma N, Vogt PM, Steinhoff G, Chichkov B (2010) Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods 16:847–854CrossRefGoogle Scholar
  29. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109:1855–1863CrossRefGoogle Scholar
  30. Lin Y, Huang Y, Chrisey DB (2009) Droplet formation in matrix-assisted pulsed-laser evaporation direct writing of glycerol-water solution. J Appl Phys 105(9):093111CrossRefGoogle Scholar
  31. Lin Y, Huang Y, Chrisey DB (2011) Metallic foil-assisted laser cell printing. J Biomech Eng 133:025001CrossRefPubMedGoogle Scholar
  32. Linge C (2004) Establishment and maintenance of normal human keratinocyte cultures. In: Picot J (ed) Methods in molecular medicine, vol 107, Human cell culture protocols. Humana Press, Totowa, p 1Google Scholar
  33. Merfeld-Clauss S, Gollahalli N, March KL, Traktuev DO (2010) Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Eng Part A 16(9):2953CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mese G, Richard G, White TW (2007) Gap junctions: basic structure and function. J Invest Dermatol 127:2516–2524CrossRefPubMedGoogle Scholar
  35. Michael S, Sorg H, Peck C-T, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 8(3):e57741CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mirsky N, Cohen Y (1995) VEGF and ECGF induce directed migration of endothelial cells: qualitative and quantitative assay. Endothelium 255:5444Google Scholar
  37. Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 127:2525–2532CrossRefPubMedGoogle Scholar
  38. Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17:385–389CrossRefPubMedGoogle Scholar
  39. Othon CM, Wu X, Anders JJ, Ringeisen BR (2008) Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater 3:034101.  https://doi.org/10.1088/1748-6041/3/3/034101CrossRefPubMedGoogle Scholar
  40. Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M, Haverich A, Chichkov B (2010) Laser printing of cells into 3D scaffolds. Biofabrication 2:014104CrossRefPubMedGoogle Scholar
  41. Palla-Papavlu A, Paraico I, Shaw-Stewart J, Dinca V, Savopol T, Kovacs E, Lippert T, Wokaun A, Dinescu M (2011) Liposome micropatterning based on laser-induced forward transfer. Appl Phys A 102(3):651–659CrossRefGoogle Scholar
  42. Pirlo RK, Wu P, Liu J, Ringeisen B (2011) PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP™. Biotechnol Bioeng 109(1):262–273CrossRefPubMedGoogle Scholar
  43. Richard G (2000) Connexins: a connection with the skin. Exp Dermatol 9:77CrossRefPubMedGoogle Scholar
  44. Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S, Auyeung RYC, Spargo BJ (2004) Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng 10(3-4):483–491CrossRefPubMedGoogle Scholar
  45. Ringeisen BR, Othon CM, Barron JA, Young D, Spargo BJ (2006) Jet-based methods to print living cells. Biotechnol J 1:930–948CrossRefPubMedGoogle Scholar
  46. Schaeffler A, Buechler C (2007) Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells 25:818–827CrossRefGoogle Scholar
  47. Schiele NR, Chrisey DB, Corr DT (2011) Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng Part C 17(3):289–298CrossRefGoogle Scholar
  48. Schlie S, Mazur K, Bintig W, Ngezahayo A (2010) Cell cycle dependent regulation of gap junction coupling and apoptosis in GFSHR-17 granulosa cells. J Biomed Sci Eng 3:884–891CrossRefGoogle Scholar
  49. Taidi B, Lebernede G, Koch L et al (2016) Colony development of laser printed eukaryotic (yeast and microalga) micro-organisms in co-culture. Int J Bioprint 2(2):146–152.  https://doi.org/10.18063/IJB.2016.02.001CrossRefGoogle Scholar
  50. Takagi M, Umetsu Y, Fujiwara M, Wakitani S (2007) High inoculation cell density could accelerate the differentiation of human bone marrow mesenchymal stem cells to chondrocyte cells. J Biosci Bioeng 103:98CrossRefPubMedGoogle Scholar
  51. Unger C, Gruene M, Koch L, Koch J, Chichkov B (2011) Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Appl Phys A 103:271–277CrossRefGoogle Scholar
  52. Vogel A, Lorenz K, Horneffer V, Hüttmann G, von Smolinski D, Gebert A (2007) Mechanisms of laser-induced dissection and transport of histologic specimens. Biophys J 93:4481–4500CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648CrossRefPubMedGoogle Scholar
  54. Yan J, Huang Y, Chrisey DB (2013) Laser-assisted printing of alginate long tubes and annular constructs. Biofabrication 5:015002CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laser Zentrum Hannover e.V.HannoverGermany

Personalised recommendations