Advertisement

Extrusion-Based Biofabrication in Tissue Engineering and Regenerative Medicine

  • Monika Hospodiuk
  • Kazim Kerim Moncal
  • Madhuri Dey
  • Ibrahim T. Ozbolat
Reference work entry
Part of the Reference Series in Biomedical Engineering book series (RSBE)

Abstract

Extrusion-based bioprinting is a powerful three-dimensional (3D) bioprinting technology that provides unique opportunities for use in organ fabrication. This technology has grown rapidly during the last decade. Extrusion-based bioprinting provides great versatility in printing various biological compounds or devices, including cells, tissues, organoids, and microfluidic devices that can be applied in basic research, pharmaceutics, drug testing, transplantation, and clinical uses. Extrusion-based bioprinting offers great flexibility in printing wide range of bioinks, including tissue spheroids, cell pellets, microcarriers, decellularized matrix components, and cell-laden hydrogels. Despite these assets, extrusion-based bioprinting has several limitations, such as inadequate control and resolution cell deposition, to create a complex tissue micro-microenvironment, shear stress-induced cell damage, and constraints associated with the current bioink materials.

Notes

Acknowledgments

This work has been supported by National Science Foundation CMMI Awards 1349716 and 1462232. We thank Fisayo Olashore and Donna Sosnoski from the Pennsylvania State University for improving the quality of the paper. The authors are grateful to the support from the Engineering Science and Mechanics Department and the College of Engineering at the Penn State University. The authors confirm that there are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome.

References

  1. Achilli M, Mantovani D (2010) Tailoring mechanical properties of collagen-based scaffolds for vascular tissue engineering: the effects of pH, temperature and ionic strength on gelation. Polymers (Basel) 2:664–680.  https://doi.org/10.3390/polym2040664CrossRefGoogle Scholar
  2. Achilli T, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi- cellular spheroids. Expert Opin Biol Ther 12:1347–1360.  https://doi.org/10.1517/14712598.2012.707181.AdvancesCrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahn S, Lee H, Bonassar LJ, Kim G (2012a) Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying. Biomacromolecules 13:2997–3003.  https://doi.org/10.1021/bm3011352CrossRefPubMedGoogle Scholar
  4. Ahn S, Lee H, Puetzer J et al (2012b) Fabrication of cell-laden three-dimensional alginate-scaffolds with an aerosol cross-linking process. J Mater Chem 22:18735.  https://doi.org/10.1039/c2jm33749eCrossRefGoogle Scholar
  5. Akkouch A, Yu Y, Ozbolat IT (2015) Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering. Biofabrication 7:31002.  https://doi.org/10.1088/1758-5090/7/3/031002CrossRefGoogle Scholar
  6. Almeida C, Serra T, Oliveira M et al (2014) Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater 10:613–622.  https://doi.org/10.1016/j.actbio.2013.10.035CrossRefPubMedGoogle Scholar
  7. Bammesberger SB, Kartmann S, Tanguy L et al (2013) A low-cost, normally closed, solenoid valve for non-contact dispensing in the sub-μl range. Micromachines 4:9–21. 10.3390/mi4010009CrossRefGoogle Scholar
  8. Bayram Y, Deveci M, Imirzalioglu N et al (2005) The cell based dressing with living allogenic keratinocytes in the treatment of foot ulcers: a case study. Br J Plast Surg 58:988–996.  https://doi.org/10.1016/j.bjps.2005.04.031CrossRefPubMedGoogle Scholar
  9. Bertassoni LE, Cardoso JC, Manoharan V et al (2014) Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 6:024105.  https://doi.org/10.1088/1758-5082/6/2/024105CrossRefPubMedPubMedCentralGoogle Scholar
  10. Billiet T, Gevaert E, De Schryver T et al (2014) The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62.  https://doi.org/10.1016/j.biomaterials.2013.09.078CrossRefPubMedPubMedCentralGoogle Scholar
  11. Boland T, Mironov V, Gutowska A et al (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec Part A Discov Mol Cell Evol Biol 272A:497–502.  https://doi.org/10.1002/ar.a.10059CrossRefGoogle Scholar
  12. Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18:240–249.  https://doi.org/10.1016/j.drudis.2012.10.003CrossRefPubMedGoogle Scholar
  13. Bruzewicz DA, Reches M, Whitesides GM (2012) Low-cost printing of PDMS barriers to define microchannels in paper. Changes 29:997–1003Google Scholar
  14. Carrow JK, Gaharwar AK (2014) Bioinspired polymeric nanocomposites for regenerative medicine. Macromol Chem Phys.  https://doi.org/10.1002/macp.201400427CrossRefGoogle Scholar
  15. Chang R, Nam J, Sun W (2008) Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A 14:41–48.  https://doi.org/10.1089/ten.a.2007.0004CrossRefPubMedGoogle Scholar
  16. Chang CC, Boland ED, Williams SK, Hoying JB (2011) Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 98:160–170.  https://doi.org/10.1002/jbm.b.31831CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chung JHY, Naficy S, Yue Z et al (2013) Bio-ink properties and printability for extrusion printing living cells. Biomater Sci 1:763.  https://doi.org/10.1039/c3bm00012eCrossRefGoogle Scholar
  18. Cohen DL, Lipton JI, Bonassar LJ, Lipson H (2010) Additive manufacturing for in situ repair of osteochondral defects. Biofabrication 2:035004.  https://doi.org/10.1088/1758-5082/2/3/035004CrossRefPubMedGoogle Scholar
  19. Cohen J, Zaleski KL, Nourissat G et al (2011) Survival of porcine mesenchymal stem cells over the alginate recovered cellular method. J Biomed Mater Res A 96:93–99.  https://doi.org/10.1002/jbm.a.32961CrossRefPubMedGoogle Scholar
  20. Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227.  https://doi.org/10.1016/j.biomaterials.2009.07.056CrossRefPubMedGoogle Scholar
  21. Curran SJ, Chen R, Curran JM, Hunt J (2005) Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres. Tissue Eng 11:1312–1322.  https://doi.org/10.1089/ten.2005.11.1312CrossRefPubMedGoogle Scholar
  22. Dababneh AB, Ozbolat IT (2014) Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng 136:061016.  https://doi.org/10.1115/1.4028512CrossRefGoogle Scholar
  23. Dana N, Parker V, Meredith M et al (2004) Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann Biomed Eng 32:391–397CrossRefGoogle Scholar
  24. Davoodi P, Feng F, Xu Q et al (2014) Coaxial electrohydrodynamic atomization: microparticles for drug delivery applications. J Control Release.  https://doi.org/10.1016/j.jconrel.2014.12.004CrossRefPubMedGoogle Scholar
  25. Dean DM, Napolitano AP, Youssef J, Morgan JR (2007) Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J 21:4005–4012.  https://doi.org/10.1096/fj.07-8710comCrossRefPubMedGoogle Scholar
  26. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351.  https://doi.org/10.1016/S0142-9612(03)00340-5CrossRefPubMedPubMedCentralGoogle Scholar
  27. Duan B, Hockaday L, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res Part A 101 A:1255–1264.  https://doi.org/10.1002/jbm.a.34420CrossRefGoogle Scholar
  28. Duarte Campos DF, Blaeser A, Weber M et al (2013) Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication 5:015003.  https://doi.org/10.1088/1758-5082/5/1/015003CrossRefPubMedGoogle Scholar
  29. Duarte Campos DF, Blaeser A, Korsten A et al (2014) The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Tissue Eng Part A:1–17.  https://doi.org/10.1089/ten.TEA.2014.0231
  30. Ehsan SM, Welch-Reardon KM, Waterman ML et al (2014) A three-dimensional in vitro model of tumor cell intravasation. Integr Biol (Camb) 6:603–610.  https://doi.org/10.1039/c3ib40170gCrossRefGoogle Scholar
  31. Elbert DL (2012) Liquid-liquid two phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: a tutorial review. Acta Biomater 7:31–56.  https://doi.org/10.1016/j.actbio.2010.07.028.Liquid-liquidCrossRefGoogle Scholar
  32. Fedorovich NE, Alblas J, de Wijn JR et al (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13:1905–1925.  https://doi.org/10.1089/ten.2006.0175CrossRefPubMedGoogle Scholar
  33. Fedorovich NE, De Wijn JR, Verbout AJ et al (2008) Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A 14:127–133.  https://doi.org/10.1089/ten.a.2007.0158CrossRefPubMedGoogle Scholar
  34. Fedorovich NE, Wijnberg HM, Dhert WJ, Alblas J (2011) Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A 17:2113–2121.  https://doi.org/10.1089/ten.tea.2011.0019CrossRefPubMedGoogle Scholar
  35. Fielding G, Bandyopadhyay A, Bose S (2012) Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 28:113–122.  https://doi.org/10.1016/j.dental.2011.09.010CrossRefPubMedGoogle Scholar
  36. Geng L, Feng W, Hutmacher DW et al (2005) Direct writing of chitosan scaffolds using a robotic system. Rapid Prototyp J 11:90–97.  https://doi.org/10.1108/13552540510589458CrossRefGoogle Scholar
  37. Gerecht S, Burdick J, Ferreira LS et al (2007) Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A 104:11298–11303.  https://doi.org/10.1073/pnas.0703723104CrossRefPubMedPubMedCentralGoogle Scholar
  38. Giovagnoli S, Tsai T, DeLuca PP (2010) Formulation and release behavior of doxycycline-alginate hydrogel microparticles embedded into pluronic F127 thermogels as a potential new vehicle for doxycycline intradermal sustained delivery. AAPS PharmSciTech 11:212–220.  https://doi.org/10.1208/s12249-009-9361-8CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827.  https://doi.org/10.1016/j.foodhyd.2011.02.007CrossRefGoogle Scholar
  40. Gou M, Qu X, Zhu W et al (2014) Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat Commun 5:3774.  https://doi.org/10.1038/ncomms4774CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gregor A, Hošek J (2011) 3D printing methods of biological scaffolds used in tissue engineering. Rom Rev Precis Mech Opt Mechatronics 3:143–148Google Scholar
  42. Grzesik WJ, Robey PG (1994) Bone matrix RGD glycoproteins: immunolocalization bone cells in vitro. J Bone Miner Res 9:487–496CrossRefPubMedGoogle Scholar
  43. Hao T, Wen N, Cao JK et al (2010) The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthr Cartil 18:257–265.  https://doi.org/10.1016/j.joca.2009.08.007CrossRefPubMedGoogle Scholar
  44. Hockaday L, Kang KH, Colangelo NW et al (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4:035005.  https://doi.org/10.1088/1758-5082/4/3/035005CrossRefPubMedPubMedCentralGoogle Scholar
  45. Homenick CM, de Silveira G, Sheardown H, Adronov A (2011) Pluronics as crosslinking agents for collagen: novel amphiphilic hydrogels. Polym Int 60:458–465.  https://doi.org/10.1002/pi.2969CrossRefGoogle Scholar
  46. Hong Y, Song H, Gong Y et al (2007) Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater 3:23–31.  https://doi.org/10.1016/j.actbio.2006.06.007CrossRefPubMedGoogle Scholar
  47. Hsiao AY, Torisawa YS, Tung YC et al (2009) Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30:3020–3027.  https://doi.org/10.1016/j.biomaterials.2009.02.047CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hussain I, Hussain SZ, Habib-ur-Rehman et al (2010) In situ growth of gold nanoparticles on latent fingerprints-from forensic applications to inkjet printed nanoparticle patterns. Nanoscale 2:2575–2578.  https://doi.org/10.1039/c0nr00593bCrossRefPubMedGoogle Scholar
  49. Jakab K, Norotte C, Marga F et al (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:22001CrossRefGoogle Scholar
  50. Jakob PH, Kehrer J, Flood P et al (2016) A 3-D cell culture system to study epithelia functions using microcarriers. Cytotechnology 1–13.  https://doi.org/10.1007/s10616-015-9935-0
  51. Jang J, Kim TG, Kim BS et al (2016) Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater 33:88–95.  https://doi.org/10.1016/j.actbio.2016.01.013CrossRefPubMedGoogle Scholar
  52. Jeon O, Song SJ, Lee K-J et al (2007) Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydr Polym 70:251–257.  https://doi.org/10.1016/j.carbpol.2007.04.002CrossRefGoogle Scholar
  53. Jia J, Richards DJ, Pollard S et al (2014) Engineering alginate as bioink for bioprinting. Acta Biomater 10:4323–4331.  https://doi.org/10.1016/j.actbio.2014.06.034CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jungst T, Smolan W, Schacht K et al (2016) Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev 116:1496–1539.  https://doi.org/10.1021/acs.chemrev.5b00303CrossRefPubMedGoogle Scholar
  55. Katakai T, Hara T, Lee JH et al (2004) A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int Immunol 16:1133–1142.  https://doi.org/10.1093/intimm/dxh113CrossRefPubMedGoogle Scholar
  56. Ker EDF, Chu B, Phillippi J et al (2011) Engineering spatial control of multiple differentiation fates within a stem cell population. Biomaterials 32:3413–3422.  https://doi.org/10.1016/j.biomaterials.2011.01.036CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kesti M, Eberhardt C, Pagliccia G et al (2015) Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater 25:7406–7417.  https://doi.org/10.1002/adfm.201503423CrossRefGoogle Scholar
  58. Khalil S, Sun W (2009) Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 131:111002.  https://doi.org/10.1115/1.3128729CrossRefPubMedGoogle Scholar
  59. Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3-D biopolymer tissue scaffolds. Rapid Prototyp J 11:9–17CrossRefGoogle Scholar
  60. Khoda A, Ozbolat IT, Koc B (2011) Engineered tissue scaffolds with variational porous architecture. J Biomech Eng 133:011001.  https://doi.org/10.1115/1.4002933CrossRefPubMedGoogle Scholar
  61. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386.  https://doi.org/10.1016/j.semcancer.2005.05.004CrossRefPubMedGoogle Scholar
  62. Kobayashi K, Huang C, Lodge TP (1999) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32:7070–7077.  https://doi.org/10.1021/ma990242nCrossRefGoogle Scholar
  63. Landers R, Hübner U, Schmelzeisen R, Mülhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447.  https://doi.org/10.1016/S0142-9612(02)00139-4CrossRefPubMedGoogle Scholar
  64. Lee W, Lee V, Polio S et al (2010a) On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng 105:1178–1186.  https://doi.org/10.1002/bit.22613CrossRefPubMedGoogle Scholar
  65. Lee Y-B, Polio S, Lee W et al (2010b) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223:645–652.  https://doi.org/10.1016/j.expneurol.2010.02.014CrossRefPubMedGoogle Scholar
  66. Levato R, Visser J, Planell J et al (2014) Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6:35020CrossRefGoogle Scholar
  67. Li C, Faulkner-Jones A, Dun AR et al (2015a) Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew Chem Int Ed Engl 1–6.  https://doi.org/10.1002/anie.201411383
  68. Li H, Dai Y, Shu J, et al (2015b) Spheroid cultures promote the stemness of corneal stromal cells. Tissue Cell 47:39–48.  https://doi.org/10.1016/j.tice.2014.10.008CrossRefPubMedGoogle Scholar
  69. Liu JY, Hafner J, Dragieva G et al (2004) Autologous cultured keratinocytes on porcine gelatin microbeads effectively heal chronic venous leg ulcers. Wound Repair Regen 12:148–156.  https://doi.org/10.1111/j.1067-1927.2004.012205.xCrossRefPubMedGoogle Scholar
  70. Lopes AJ, Lee IH, Macdonald E et al (2014) Laser curing of silver-based conductive inks for in situ 3D structural electronics fabrication in stereolithography. J Mater Process Technol 214:1935–1945.  https://doi.org/10.1016/j.jmatprotec.2014.04.009CrossRefGoogle Scholar
  71. Lott JR, McAllister JW, Arvidson S et al (2013) Fibrillar structure of methylcellulose hydrogels. Biomacromolecules 14:2484–2488.  https://doi.org/10.1021/bm400694rCrossRefPubMedGoogle Scholar
  72. Ma L, Gao C, Mao Z et al (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841.  https://doi.org/10.1016/S0142-9612(03)00374-0CrossRefPubMedGoogle Scholar
  73. Malda J, van Blitterswijk C, Grojec M et al (2003) Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng 9:939–948.  https://doi.org/10.1089/107632703322495583CrossRefPubMedGoogle Scholar
  74. Malda J, Visser J, Melchels FP et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25:5011–5028.  https://doi.org/10.1002/adma.201302042CrossRefGoogle Scholar
  75. Markstedt K, Mantas A, Tournier I et al (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 150325142328001.  https://doi.org/10.1021/acs.biomac.5b00188
  76. Mehesz AN, Brown J, Hajdu Z et al (2011) Scalable robotic biofabrication of tissue spheroids. Biofabrication 3:25002CrossRefGoogle Scholar
  77. Melchels FPW, Dhert WJ, Hutmacher DW, Malda J (2014) Development and characterisation of a new bioink for additive tissue manufacturing. J Mater Chem B 2:2282.  https://doi.org/10.1039/c3tb21280gCrossRefGoogle Scholar
  78. Melchels FPW, Blokzijl MM, Levato R et al (2016) Hydrogel-based reinforcement of 3D bioprinted constructs. Biofabrication 8:035004.  https://doi.org/10.1088/1758-5090/8/3/035004CrossRefPubMedPubMedCentralGoogle Scholar
  79. Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interface Sci 147–148:214–227.  https://doi.org/10.1016/j.cis.2008.09.005CrossRefPubMedGoogle Scholar
  80. Mironov V, Boland T, Trusk T et al (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161.  https://doi.org/10.1016/S0167-7799(03)00033-7CrossRefPubMedPubMedCentralGoogle Scholar
  81. Mironov V, Visconti RP, Kasyanov V et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174CrossRefPubMedPubMedCentralGoogle Scholar
  82. Mironov V, Kasyanov V, Markwald RR (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22:667–673.  https://doi.org/10.1016/j.copbio.2011.02.006CrossRefPubMedGoogle Scholar
  83. Mogas-Soldevila L, Duro-Royo J, Oxman N (2014) Water-based robotic fabrication: large-scale additive manufacturing of functionally graded hydrogel composites via multichamber extrusion. 3D Print Addit Manuf 1:141–151.  https://doi.org/10.1089/3dp.2014.0014CrossRefGoogle Scholar
  84. Mooney R, Haeger S, Lawal R et al (2011) Control of neural cell composition in poly(ethylene glycol) hydrogel culture with soluble factors. Tissue Eng Part A 17:2805–2815.  https://doi.org/10.1089/ten.tea.2010.0654CrossRefPubMedPubMedCentralGoogle Scholar
  85. Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M (2015) Nanostructured pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 7:035006.  https://doi.org/10.1088/1758-5090/7/3/035006CrossRefPubMedGoogle Scholar
  86. Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res Part A 101(A):272–284.  https://doi.org/10.1002/jbm.a.34326CrossRefGoogle Scholar
  87. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917.  https://doi.org/10.1016/j.biomaterials.2009.06.034CrossRefPubMedPubMedCentralGoogle Scholar
  88. Odde DJ, Renn MJ (2000) Laser-guided direct writing of living cells. Biotechnol Bioeng 67:312CrossRefPubMedGoogle Scholar
  89. Ong SY, Wu J, Moochhala SM et al (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332.  https://doi.org/10.1016/j.biomaterials.2008.07.034CrossRefPubMedGoogle Scholar
  90. Overstreet M, Sohrabi A, Polotsky A et al (2003) Collagen microcarrier spinner culture promotes osteoblast proliferation and synthesis of matrix proteins. In Vitro Cell Dev Biol Anim 39:228–234.  https://doi.org/10.1290/1543-706X(2003)039CrossRefPubMedGoogle Scholar
  91. Oxlund H, Andreassen TT (1980) The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues. J Anat 131:611–620PubMedPubMedCentralGoogle Scholar
  92. Ozbolat IT (2015a) Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 33:395–400.  https://doi.org/10.1016/j.tibtech.2015.04.005CrossRefPubMedGoogle Scholar
  93. Ozbolat IT (2015b) Scaffold-based or scaffold-free bioprinting: competing or complementing approaches? J Nanotechnol Eng Med.  https://doi.org/10.1115/1.4030414CrossRefGoogle Scholar
  94. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343.  https://doi.org/10.1016/j.biomaterials.2015.10.076CrossRefPubMedGoogle Scholar
  95. Ozbolat IT, Koc B (2010) Modeling of spatially controlled biomolecules in three-dimensional porous alginate structures. J Med Devices 4:041003.  https://doi.org/10.1115/1.4002612CrossRefGoogle Scholar
  96. Ozbolat IT, Koc B (2011) Multi-function based modeling of 3D heterogeneous wound scaffolds for improved wound healing. Comput Aided Des Applic 8:43–57.  https://doi.org/10.3722/cadaps.2011.43-57CrossRefGoogle Scholar
  97. Ozbolat IT, Chen H, Yu Y (2014) Development of “multi-arm bioprinter” for hybrid biofabrication of tissue engineering constructs. Robot Comput Integr Manuf 30:295–304.  https://doi.org/10.1016/j.rcim.2013.10.005CrossRefGoogle Scholar
  98. Pardo L, Wilson WC, Boland T (2003) Characterization of patterned self-assembled monolayers and protein arrays generated by the ink-jet method. Langimur 19:1462–1466CrossRefGoogle Scholar
  99. Park JY, Choi J-C, Shim J-H et al (2014) A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication 6:035004.  https://doi.org/10.1088/1758-5082/6/3/035004CrossRefPubMedGoogle Scholar
  100. Pati F, Jang J, Ha D-H et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935.  https://doi.org/10.1038/ncomms4935CrossRefPubMedPubMedCentralGoogle Scholar
  101. Pati F, Ha D, Jang J et al (2015a) Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175.  https://doi.org/10.1016/j.biomaterials.2015.05.043CrossRefPubMedGoogle Scholar
  102. Pati F, Jang J, Lee JW, Cho DW (2015b) Extrusion bioprinting. Essentials of 3D biofabrication and translation.  https://doi.org/10.1016/B978-0-12-800972-7.00007-4CrossRefGoogle Scholar
  103. Pfister A, Landers R, Laib A et al (2004) Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci Part A Polym Chem 42:624–638.  https://doi.org/10.1002/pola.10807CrossRefGoogle Scholar
  104. Poldervaart MT, Wang H, van der Stok J et al (2013) Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS One 8:e72610.  https://doi.org/10.1371/journal.pone.0072610CrossRefPubMedPubMedCentralGoogle Scholar
  105. Ren X, Kim Y, Zhou J (2013) Design and fabrication of chitosan for application of artificial photosynthesis. J Mech Eng Automat 3:739–746Google Scholar
  106. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632.  https://doi.org/10.1016/j.progpolymsci.2006.06.001CrossRefGoogle Scholar
  107. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53.  https://doi.org/10.1016/S0142-9612(98)00107-0CrossRefPubMedGoogle Scholar
  108. Rücker M, Laschke MW, Junker D et al (2006) Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials 27:5027–5038.  https://doi.org/10.1016/j.biomaterials.2006.05.033CrossRefPubMedGoogle Scholar
  109. Serwer P, Allen JL, Hayes SJ (1983) Agarose gel electrophoresis of bacteriophages and related particles III. Dependence of gel sieving on the agarose preparation. Electrophoresis 4:232–236.  https://doi.org/10.1002/elps.1150040309CrossRefGoogle Scholar
  110. Shikani AH, Fink DJ, Sohrabi A et al (2004) Propagation of human nasal chondrocytes in microcarrier spinner culture. Am J Rhinol 18:105–112PubMedCrossRefGoogle Scholar
  111. Skardal A, Atala A (2014) Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng.  https://doi.org/10.1007/s10439-014-1207-1CrossRefPubMedGoogle Scholar
  112. Skardal A, Sarker SF, Crabbé A et al (2010a) The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 31:8426–8435.  https://doi.org/10.1016/j.biomaterials.2010.07.047CrossRefPubMedGoogle Scholar
  113. Skardal A, Zhang J, McCoard L et al (2010b) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 16:2675–2685.  https://doi.org/10.1089/ten.TEA.2009.0798CrossRefPubMedPubMedCentralGoogle Scholar
  114. Smith CM, Stone A, Stewart RL et al (2004) Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng 10:1566–1576CrossRefGoogle Scholar
  115. Snyder JE, Hamid Q, Wang C et al (2011) Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3:034112.  https://doi.org/10.1088/1758-5082/3/3/034112CrossRefPubMedGoogle Scholar
  116. Thirumala S, Gimble J, Devireddy R (2013) Methylcellulose based thermally reversible hydrogel system for tissue engineering applications. Cells 2:460–475.  https://doi.org/10.3390/cells2030460CrossRefPubMedPubMedCentralGoogle Scholar
  117. Torisawa Y, Mosadegh B, Luker GD et al (2009) Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr Biol (Camb) 1:649–654.  https://doi.org/10.1039/b915965gCrossRefGoogle Scholar
  118. Trojani C, Weiss P, Michiels JF et al (2005) Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 26:5509–5517.  https://doi.org/10.1016/j.biomaterials.2005.02.001CrossRefPubMedGoogle Scholar
  119. Van Den Bulcke I, Bogdanov B, De Rooze N et al (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38.  https://doi.org/10.1021/bm990017dCrossRefGoogle Scholar
  120. Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458.  https://doi.org/10.1016/S1359-6446(05)03575-0CrossRefPubMedGoogle Scholar
  121. Vinatier C, Magne D, Weiss P et al (2005) A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials 26:6643–6651.  https://doi.org/10.1016/j.biomaterials.2005.04.057CrossRefPubMedGoogle Scholar
  122. Vozzi G, Previti A, De Rossi D, Ahluwalia A (2002) Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng 8:1089–1098.  https://doi.org/10.1089/107632702320934182CrossRefPubMedPubMedCentralGoogle Scholar
  123. Wang X, Yan Y, Pan Y et al (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12:83–90.  https://doi.org/10.1089/ten.2006.12.ft-16CrossRefPubMedGoogle Scholar
  124. Wang Z, Wu W, Yang Q et al (2009) In-situ fabrication of flexible vertically integrated electronic circuits by inkjet printing. J Alloys Compd 486:706–710.  https://doi.org/10.1016/j.jallcom.2009.07.044CrossRefGoogle Scholar
  125. Wei Xu, Xiaohong Wang, Yongnian Yan, et al (2007) Rapid prototyping three-dimensional cell/gelatin/fibrinogen constructs for medical regeneration. J Bioact Compat Polym 22:363–377.  https://doi.org/10.1177/0883911507079451
  126. Wu PK, Ringeisen BR (2010) Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2:014111.  https://doi.org/10.1088/1758-5082/2/1/014111CrossRefPubMedGoogle Scholar
  127. Wu C, Luo Y, Cuniberti G et al (2011a) Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater 7:2644–2650.  https://doi.org/10.1016/j.actbio.2011.03.009CrossRefPubMedGoogle Scholar
  128. Wu W, DeConinck A, Lewis J (2011b) Omnidirectional printing of 3D microvascular networks. Adv Mater 23:H178–H183.  https://doi.org/10.1002/adma.201004625CrossRefPubMedGoogle Scholar
  129. Wüst S, Müller R, Hofmann S (2014) 3D bioprinting of complex channels – effects of material, orientation, geometry and cell embedding. J Biomed Mater Res A.  https://doi.org/10.1002/jbm.a.35393CrossRefPubMedGoogle Scholar
  130. Xing Q, Yates K, Vogt C et al (2014) Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep 4:4706.  https://doi.org/10.1038/srep04706CrossRefPubMedPubMedCentralGoogle Scholar
  131. Xu T, Gregory C, Molnar P et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588.  https://doi.org/10.1016/j.biomaterials.2006.01.048CrossRefPubMedGoogle Scholar
  132. Yang S, Leong K-F, Du Z, Chua C-K (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8:1–11.  https://doi.org/10.1089/107632702753503009CrossRefPubMedGoogle Scholar
  133. Ye K, Felimban R, Traianedes K et al (2014) Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold. PLoS One.  https://doi.org/10.1371/journal.pone.0099410CrossRefPubMedPubMedCentralGoogle Scholar
  134. Yu Y, Ozbolat IT (2014) Tissue strands as “bioink” for scale-up organ printing. Conf Proc IEEE Eng Med Biol Soc 2014:1428–1431.  https://doi.org/10.1109/EMBC.2014.6943868CrossRefPubMedGoogle Scholar
  135. Yu Y, Brouillette MJ, Seol D et al (2012) Functional full-thickness articular cartilage repair by rhSDF-1α loaded fibrin/HA hydrogel network via chondrogenic progenitor cells homing. Arthritis Rheum 1–30.  https://doi.org/10.1002/art
  136. Yu Y, Zhang Y, Martin J, Ozbolat IT (2013) Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng 135:91011.  https://doi.org/10.1115/1.4024575CrossRefPubMedGoogle Scholar
  137. Yu Y, Zhang Y, Ozbolat IT (2014) A hybrid bioprinting approach for scale-up tissue fabrication. J Manuf Sci Eng 136:061013.  https://doi.org/10.1115/1.4028511CrossRefGoogle Scholar
  138. Zhang M, Desai T, Ferrari M (1998) Proteins and cells on PEG immobilized silicon surfaces. Biomaterials 19:953–960.  https://doi.org/10.1016/S0142-9612(98)00026-XCrossRefPubMedGoogle Scholar
  139. Zhang Y, Venugopal JR, El-Turki A et al (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322.  https://doi.org/10.1016/j.biomaterials.2008.07.038CrossRefPubMedGoogle Scholar
  140. Zhang L, Huang J, Si T, Xu RX (2012) Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Changes 29:997–1003Google Scholar
  141. Zhang Y, Yu Y, Ozbolat IT (2013) Direct bioprinting of vessel-like tubular microfluidic channels. J Nanotechnol Eng Med 4:020902.  https://doi.org/10.1115/1.4024398CrossRefGoogle Scholar
  142. Zhang Y, Yu Y, Akkouch A et al (2015) In vitro study of directly bioprinted perfusable vasculature conduits. Biomater Sci 3:134–143.  https://doi.org/10.1039/C4BM00234BCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Monika Hospodiuk
    • 1
    • 2
  • Kazim Kerim Moncal
    • 1
    • 2
  • Madhuri Dey
    • 1
    • 3
  • Ibrahim T. Ozbolat
    • 1
    • 2
    • 4
    • 5
  1. 1.The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Engineering Science and Mechanics DepartmentThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.Biomedical Engineering DepartmentThe Pennsylvania State UniversityUniversity ParkUSA
  5. 5.Materials Research InstituteThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations