Thyroid Autoantibodies

  • R. A. Ajjan
  • A. P. WeetmanEmail author
Reference work entry
Part of the Endocrinology book series (ENDOCR)


Thyroid autoantibodies are directed predominantly against thyroglobulin, thyroid peroxidase and the TSH receptor, although other components of the thyroid cell may also be autoantigenic targets in a small proportion of patients. In terms of pathogenesis, any role for thyroglobulin or thyroid peroxidase antibodies is confined to the secondary phase of autoimmune destruction. In contrast, stimulating antibodies against the TSH receptor cause Graves’ disease, and, in a small proportion of patients with autoimmune hypothyroidism, blocking antibodies against the TSH receptor are responsible for the thyroid dysfunction. This chapter reviews the pathogenic role of thyroid antibodies in autoimmune thyroid disorders, describes the various methods used to detect these antibodies, and describes their clinical utility in diagnosis and patient management, including the use of thyroid antibody measurement in relation to pregnancy and the postpartum period. It also reviews the effect of thyroglobulin antibodies on the measurement of serum thyroglobulin and the consequences for the management of patients with differentiated thyroid cancer.


Thyroglobulin antibody Thyroid peroxidase antibody TSH receptor antibody Graves’ disease Autoimmune hypothyroidism Pregnancy Postpartum thyroiditis Pendrin antibody Sodium iodide symporter antibody Thyroid hormone antibody 


  1. Abeillon-du PJ, Chikh K, Bossard N, Bretones P, Gaucherand P, Claris O, et al. Predictive value of maternal second-generation thyroid-binding inhibitory immunoglobulin assay for neonatal autoimmune hyperthyroidism. Eur J Endocrinol. 2014;171(4):451–60.CrossRefGoogle Scholar
  2. Adams DD, Purve HD. Abnormal responses in the assay of thyrotropin. Proc Univ Otago Med Sch. 1956;34:11–2.Google Scholar
  3. Adler TR, Beall GN, Curd JG, Heiner DC, Sabharwal UK. Studies of complement activation and IgG subclass restriction of anti-thyroglobulin. Clin Exp Immunol. 1984;56(2):383–9.PubMedPubMedCentralGoogle Scholar
  4. Ajjan RA, Weetman AP. Techniques to quantify TSH receptor antibodies. Nat Clin Pract Endocrinol Metab. 2008;4(8):461–8.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ajjan RA, Findlay C, Metcalfe RA, Watson PF, Crisp M, Ludgate M, et al. The modulation of the human sodium iodide symporter activity by Graves’ disease sera. J Clin Endocrinol Metab. 1998;83(4):1217–21.PubMedPubMedCentralGoogle Scholar
  6. Ajjan RA, Kemp EH, Waterman EA, Watson PF, Endo T, Onaya T, et al. Detection of binding and blocking autoantibodies to the human sodium-iodide symporter in patients with autoimmune thyroid disease. J Clin Endocrinol Metab. 2000;85(5):2020–7.PubMedPubMedCentralGoogle Scholar
  7. Ajjan RA, Weetman AP. Autoimmune thyroid disease and autoimmune polyglandular syndrome. In: Austin KF, Frank MM, Canton HI, Atkinson JP, Samter M, editors. Samter’s immunological diseases. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 605–26.Google Scholar
  8. Ando T, Latif R, Pritsker A, Moran T, Nagayama Y, Davies TF. A monoclonal thyroid-stimulating antibody. J Clin Invest. 2002;110(11):1667–74.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ando T, Latif R, Daniel S, Eguchi K, Davies TF. Dissecting linear and conformational epitopes on the native thyrotropin receptor. Endocrinology. 2004;145(11):5185–93.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bahn RS. Clinical review 157: pathophysiology of Graves’ ophthalmopathy: the cycle of disease. J Clin Endocrinol Metab. 2003;88(5):1939–46.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bahn RS. TSH receptor expression in orbital tissue and its role in the pathogenesis of Graves’ ophthalmopathy. J Endocrinol Invest. 2004;27(3):216–20.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bahn Chair RS, Burch HB, Cooper DS, Garber JR, Greenlee MC, Klein I, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid. 2011;21(6):593–646.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bartalena L. Diagnosis and management of Graves disease: a global overview. Nat Rev Endocrinol. 2013;9(12):724–34.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bartalena L, Fatourechi V. Extrathyroidal manifestations of Graves’ disease: a 2014 update. J Endocrinol Invest. 2014;37:691.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Beever K, Bradbury J, Phillips D, McLachlan SM, Pegg C, Goral A, et al. Highly sensitive assays of autoantibodies to thyroglobulin and to thyroid peroxidase. Clin Chem. 1989;35(9):1949–54.PubMedGoogle Scholar
  16. Belguith-Maalej S, Hadj-Kacem H, Rebuffat SA, Mnif-Feki M, Nguyen B, Abid M, et al. Absence of anti-pendrin auto-antibodies in the sera of Tunisian patients with autoimmune thyroid diseases. Clin Lab. 2010;56(7–8):335–43.PubMedPubMedCentralGoogle Scholar
  17. Belyavin G, Trotter WR. Investigations of thyroid antigens reacting with Hashimoto sera; evidence for an antigen other than thyroglobulin. Lancet. 1959;1(7074):648–52.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Benvenga S, Pintaudi B, Vita R, Di VG, Di BA. Serum thyroid hormone autoantibodies in type 1 diabetes mellitus. J Clin Endocrinol Metab. 2015;100(5):1870–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bhattacharyya R, Mukherjee K, Das A, Biswas MR, Basunia SR, Mukherjee A. Anti-thyroid peroxidase antibody positivity during early pregnancy is associated with pregnancy complications and maternal morbidity in later life. J Nat Sci Biol Med. 2015;6(2):402–5.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bogazzi F, Bartalena L, Martino E. Approach to the patient with amiodarone-induced thyrotoxicosis. J Clin Endocrinol Metab. 2010;95(6):2529–35.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bonnema SJ, Hegedus L. Radioiodine therapy in benign thyroid diseases: effects, side effects, and factors affecting therapeutic outcome. Endocr Rev. 2012;33(6):920–80.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brix TH, Hegedus L, Weetman AP, Kemp HE. Pendrin and NIS antibodies are absent in healthy individuals and are rare in autoimmune thyroid disease: evidence from a Danish twin study. Clin Endocrinol (Oxf). 2014;81(3):440–4.CrossRefGoogle Scholar
  23. Bryant WP, Bergert ER, Morris JC. Identification of thyroid blocking antibodies and receptor epitopes in autoimmune hypothyroidism by affinity purification using synthetic TSH receptor peptides. Autoimmunity. 1995;22(2):69–79.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Burch HB, Burman KD, Cooper DS. A 2011 survey of clinical practice patterns in the management of Graves’ disease. J Clin Endocrinol Metab. 2012;97(12):4549–58.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Carella C, Mazziotti G, Sorvillo F, Piscopo M, Cioffi M, Pilla P, et al. Serum thyrotropin receptor antibodies concentrations in patients with Graves’ disease before, at the end of methimazole treatment, and after drug withdrawal: evidence that the activity of thyrotropin receptor antibody and/or thyroid response modify during the observation period. Thyroid. 2006;16(3):295–302.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cayzer I, Chalmers SR, Doniach D, Swana G. An evaluation of two new haemagglutination tests for the rapid diagnosis of autoimmune thyroid diseases. J Clin Pathol. 1978;31(12):1147–51.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chardes T, Chapal N, Bresson D, Bes C, Giudicelli V, Lefranc MP, et al. The human anti-thyroid peroxidase autoantibody repertoire in Graves’ and Hashimoto’s autoimmune thyroid diseases. Immunogenetics. 2002;54(3):141–57.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chazenbalk GD, Pichurin P, Chen CR, Latrofa F, Johnstone AP, McLachlan SM, et al. Thyroid-stimulating autoantibodies in Graves’ disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. J Clin Invest. 2002;110(2):209–17.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen CR, Aliesky H, Pichurin PN, Nagayama Y, McLachlan SM, Rapoport B. Susceptibility rather than resistance to hyperthyroidism is dominant in a thyrotropin receptor adenovirus-induced animal model of Graves’ disease as revealed by BALB/c-C57BL/6 hybrid mice. Endocrinology. 2004;145(11):4927–33.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chen CR, Hamidi S, Braley-Mullen H, Nagayama Y, Bresee C, Aliesky HA, et al. Antibodies to thyroid peroxidase arise spontaneously with age in NOD.H-2h4 mice and appear after thyroglobulin antibodies. Endocrinology. 2010;151(9):4583–93.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chen H, Mester T, Raychaudhuri N, Kauh CY, Gupta S, Smith TJ, et al. Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J Clin Endocrinol Metab. 2014;99(9):E1635–40.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chin HS, Chin DK, Morgenthaler NG, Vassart G, Costagliola S. Rarity of anti- Na+/I- symporter (NIS) antibody with iodide uptake inhibiting activity in autoimmune thyroid diseases (AITD). J Clin Endocrinol Metab. 2000;85(10):3937–40.PubMedPubMedCentralGoogle Scholar
  33. Chiovato L, Vitti P, Santini F, Lopez G, Mammoli C, Bassi P, et al. Incidence of antibodies blocking thyrotropin effect in vitro in patients with euthyroid or hypothyroid autoimmune thyroiditis. J Clin Endocrinol Metab. 1990;71(1):40–5.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cho SW, Bae JH, Noh GW, Kim YA, Moon MK, Park KU, et al. The presence of thyroid-stimulation blocking antibody prevents high bone turnover in untreated premenopausal patients with Graves’ disease. PLoS One. 2015;10(12):e0144599.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Colucci R, Lotti F, Dragoni F, Arunachalam M, Lotti T, Benvenga S, et al. High prevalence of circulating autoantibodies against thyroid hormones in vitiligo and correlation with clinical and historical parameters of patients. Br J Dermatol. 2014;171(4):786–98.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Cooper DS, Laurberg P. Hyperthyroidism in pregnancy. Lancet Diabetes Endocrinol. 2013;1(3):238–49.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Costagliola S, Franssen JD, Bonomi M, Urizar E, Willnich M, Bergmann A, et al. Generation of a mouse monoclonal TSH receptor antibody with stimulating activity. Biochem Biophys Res Commun. 2002;299(5):891–6.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Costelloe SJ, Wassef N, Schulz J, Vaghijiani T, Morris C, Whiting S, et al. Thyroid dysfunction in a UK hepatitis C population treated with interferon-alpha and ribavirin combination therapy. Clin Endocrinol (Oxf). 2010;73(2):249–56.Google Scholar
  39. Czarnocka B, Ruf J, Ferrand M, Carayon P, Lissitzky S. Purification of the human thyroid peroxidase and its identification as the microsomal antigen involved in autoimmune thyroid diseases. FEBS Lett. 1985;190(1):147–52.PubMedCrossRefPubMedCentralGoogle Scholar
  40. D’Aurizio F, Tozzoli R, Villalta D, Pesce G, Bagnasco M. Immunoassay of thyroid peroxidase autoantibodies: diagnostic performance in automated third generation methods. A multicentre evaluation. Clin Chem Lab Med. 2015;53(3):415–21.PubMedCrossRefPubMedCentralGoogle Scholar
  41. De Bellis A, Sansone D, Coronella C, Conte M, Iorio S, Perrino S, et al. Serum antibodies to collagen XIII: a further good marker of active Graves’ ophthalmopathy. Clin Endocrinol (Oxf). 2005;62(1):24–9.CrossRefGoogle Scholar
  42. De GL, Abalovich M, Alexander EK, Amino N, Barbour L, Cobin RH, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(8):2543–65.Google Scholar
  43. De RA, de Gruijl TD, Uram JN, Tzou SC, Iwama S, Talor MV, et al. Development of thyroglobulin antibodies after GVAX immunotherapy is associated with prolonged survival. Int J Cancer. 2015;136(1):127–37.Google Scholar
  44. Diana T, Kanitz M, Lehmann M, Li Y, Olivo PD, Kahaly GJ. Standardization of a bioassay for thyrotropin receptor stimulating autoantibodies. Thyroid. 2015;25(2):169–75.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Diana T, Wuster C, Kanitz M, Kahaly GJ. Highly variable sensitivity of five binding and two bio-assays for TSH-receptor antibodies. J Endocrinol Invest. 2016;39(10):1159–65.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Dubska M, Banga JP, Plochocka D, Hoser G, Kemp EH, Sutton BJ, et al. Structural insights into autoreactive determinants in thyroid peroxidase composed of discontinuous and multiple key contact amino acid residues contributing to epitopes recognized by patients’ autoantibodies. Endocrinology. 2006;147(12):5995–6003.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Durante C, Tognini S, Montesano T, Orlandi F, Torlontano M, Puxeddu E, et al. Clinical aggressiveness and long-term outcome in patients with papillary thyroid cancer and circulating anti-thyroglobulin autoantibodies. Thyroid. 2014;24(7):1139–45.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Eckstein AK, Plicht M, Lax H, Neuhauser M, Mann K, Lederbogen S, et al. Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab. 2006;91(9):3464–70.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ekinci EI, Chiu WL, Lu ZX, Sikaris K, Churilov L, Bittar I, et al. A longitudinal study of thyroid autoantibodies in pregnancy: the importance of test timing. Clin Endocrinol (Oxf). 2015;82(4):604–10.CrossRefGoogle Scholar
  50. Estienne V, McIntosh RS, Ruf J, Asghar MS, Watson PF, Carayon P, et al. Comparative mapping of cloned human and murine antithyroglobulin antibodies: recognition by human antibodies of an immunodominant region. Thyroid. 1998;8(8):643–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ewins DL, Wilkin TJ. A clinical comparison of the enzyme-linked immunosorbent assay (ELISA) and haemagglutination (TRC) in the routine detection of antithyroglobulin antibodies. Acta Endocrinol (Copenh). 1983;103(2):216–22.CrossRefGoogle Scholar
  52. Fisher DA. Fetal thyroid function: diagnosis and management of fetal thyroid disorders. Clin Obstet Gynecol. 1997;40(1):16–31.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Fukuma N, Petersen VB, McLachlan SM, Pegg CA, Rees SB. Human monoclonal thyroglobulin autoantibodies of high affinity. I. Production, characterisation and interaction with murine monoclonal thyroglobulin antibodies. Autoimmunity. 1991;10(4):291–5.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid. 2012;22(12):1200–35.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gardas A, Lewartowska A, Sutton BJ, Pasieka Z, McGregor AM, Banga JP. Human thyroid peroxidase (TPO) isoforms, TPO-1 and TPO-2: analysis of protein expression in Graves’ thyroid tissue. J Clin Endocrinol Metab. 1997;82(11):3752–7.PubMedPubMedCentralGoogle Scholar
  56. Gerding MN, van der Meer JW, Broenink M, Bakker O, Wiersinga WM, Prummel MF. Association of thyrotrophin receptor antibodies with the clinical features of Graves’ ophthalmopathy. Clin Endocrinol (Oxf). 2000;52(3):267–71.CrossRefGoogle Scholar
  57. Gershengorn MC, Neumann S. Update in TSH receptor agonists and antagonists. J Clin Endocrinol Metab. 2012;97(12):4287–92.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gimenez-Barcons M, Colobran R, Gomez-Pau A, Marin-Sanchez A, Casteras A, Obiols G, et al. Graves’ disease TSHR-stimulating antibodies (TSAbs) induce the activation of immature thymocytes: a clue to the riddle of TSAbs generation? J Immunol. 2015;194(9):4199–206.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hansen PS, Brix TH, Iachine I, Kyvik KO, Hegedus L. The relative importance of genetic and environmental effects for the early stages of thyroid autoimmunity: a study of healthy Danish twins. Eur J Endocrinol. 2006;154(1):29–38.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hasham A, Tomer Y. Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol Res. 2012;54(1–3):204–13.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jensen EA, Petersen PH, Blaabjerg O, Hansen PS, Brix TH, Hegedus L. Establishment of reference distributions and decision values for thyroid antibodies against thyroid peroxidase (TPOAb), thyroglobulin (TgAb) and the thyrotropin receptor (TRAb). Clin Chem Lab Med. 2006;44(8):991–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kabelitz M, Liesenkotter KP, Stach B, Willgerodt H, Stablein W, Singendonk W, et al. The prevalence of anti-thyroid peroxidase antibodies and autoimmune thyroiditis in children and adolescents in an iodine replete area. Eur J Endocrinol. 2003;148(3):301–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kakinuma A, Morimoto I, Kuroda T, Fujihira T, Eto S, McLachlan SM, et al. Comparison of recombinant human thyrotropin receptors versus porcine thyrotropin receptors in the thyrotropin binding inhibition assay for thyrotropin receptor autoantibodies. Thyroid. 1999;9(9):849–55.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kasagi K, Konishi J, Iida Y, Ikekubo K, Mori T, Kuma K, et al. A new in vitro assay for human thyroid stimulator using cultured thyroid cells: effect of sodium chloride on adenosine 3′,5′-monophosphate increase. J Clin Endocrinol Metab. 1982;54(1):108–14.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kasagi K, Konishi J, Iida Y, Tokuda Y, Arai K, Endo K, et al. A sensitive and practical assay for thyroid-stimulating antibodies using FRTL-5 thyroid cells. Acta Endocrinol (Copenh). 1987;115(1):30–6.CrossRefGoogle Scholar
  67. Kasagi K, Kousaka T, Higuchi K, Iida Y, Misaki T, Alam MS, et al. Clinical significance of measurements of antithyroid antibodies in the diagnosis of Hashimoto’s thyroiditis: comparison with histological findings. Thyroid. 1996;6(5):445–50.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kemp EH, Sandhu HK, Watson PF, Weetman AP. Low frequency of pendrin autoantibodies detected using a radioligand binding assay in patients with autoimmune thyroid disease. J Clin Endocrinol Metab. 2013;98(2):E309–13.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Khong JJ, McNab AA, Ebeling PR, Craig JE, Selva D. Pathogenesis of thyroid eye disease: review and update on molecular mechanisms. Br J Ophthalmol. 2016;100(1):142–50.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Khoo TK, Bahn RS. Pathogenesis of Graves’ ophthalmopathy: the role of autoantibodies. Thyroid. 2007;17(10):1013–8.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Khoo DH, Eng PH, Ho SC, Tai ES, Morgenthaler NG, Seah LL, et al. Graves’ ophthalmopathy in the absence of elevated free thyroxine and triiodothyronine levels: prevalence, natural history, and thyrotropin receptor antibody levels. Thyroid. 2000;10(12):1093–100.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Korevaar TI, Schalekamp-Timmermans S, de Rijke YB, Visser WE, Visser W, de Muinck Keizer-Schrama SM, et al. Hypothyroxinemia and TPO-antibody positivity are risk factors for premature delivery: the generation R study. J Clin Endocrinol Metab. 2013;98(11):4382–90.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Latrofa F, Ricci D, Grasso L, Vitti P, Masserini L, Basolo F, et al. Characterization of thyroglobulin epitopes in patients with autoimmune and non-autoimmune thyroid diseases using recombinant human monoclonal thyroglobulin autoantibodies. J Clin Endocrinol Metab. 2008;93(2):591–6.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Latrofa F, Fiore E, Rago T, Antonangeli L, Montanelli L, Ricci D, et al. Iodine contributes to thyroid autoimmunity in humans by unmasking a cryptic epitope on thyroglobulin. J Clin Endocrinol Metab. 2013;98(11):E1768–74.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Leger J, Olivieri A, Donaldson M, Torresani T, Krude H, van Vliet G. European Society for Paediatric Endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. Horm Res Paediatr. 2014;81(2):80–103.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Lindberg B, Svensson J, Ericsson UB, Nilsson P, Svenonius E, Ivarsson SA. Comparison of some different methods for analysis of thyroid autoantibodies: importance of thyroglobulin autoantibodies. Thyroid. 2001;11(3):265–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Liu C, Hermsen D, Domberg J, Graeber C, Hautzel H, Duan Y, et al. Comparison of M22-based ELISA and human-TSH-receptor-based luminescence assay for the measurement of thyrotropin receptor antibodies in patients with thyroid diseases. Horm Metab Res. 2008;40(7):479–83.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Ludgate M, Dong Q, Dreyfus PA, Zakut H, Taylor P, Vassart G, et al. Definition, at the molecular level, of a thyroglobulin-acetylcholinesterase shared epitope: study of its pathophysiological significance in patients with Graves’ ophthalmopathy. Autoimmunity. 1989;3(3):167–76.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lupoli GA, Okosieme OE, Evans C, Clark PM, Pickett AJ, Premawardhana LD, et al. Prognostic significance of thyroglobulin antibody epitopes in differentiated thyroid cancer. J Clin Endocrinol Metab. 2015;100(1):100–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lytton SD, Ponto KA, Kanitz M, Matheis N, Kohn LD, Kahaly GJ. A novel thyroid stimulating immunoglobulin bioassay is a functional indicator of activity and severity of Graves’ orbitopathy. J Clin Endocrinol Metab. 2010;95(5):2123–31.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Malthiery Y, Lissitzky S. Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA. Eur J Biochem. 1987;165(3):491–8.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Many MC, Costagliola S, Detrait M, Denef F, Vassart G, Ludgate MC. Development of an animal model of autoimmune thyroid eye disease. J Immunol. 1999;162(8):4966–74.PubMedPubMedCentralGoogle Scholar
  83. Marino M, Chiovato L, Lisi S, Altea MA, Marcocci C, Pinchera A. Role of thyroglobulin in the pathogenesis of Graves’ ophthalmopathy: the hypothesis of Kriss revisited. J Endocrinol Invest. 2004;27(3):230–6.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Massart C, Gibassier J, d’Herbomez M. Clinical value of M22-based assays for TSH-receptor antibody (TRAb) in the follow-up of antithyroid drug treated Graves' disease: comparison with the second generation human TRAb assay. Clin Chim Acta. 2009;407(1–2):62–6.PubMedCrossRefPubMedCentralGoogle Scholar
  85. McLachlan SM, Rapoport B. The molecular biology of thyroid peroxidase: cloning, expression and role as autoantigen in autoimmune thyroid disease. Endocr Rev. 1992;13(2):192–206.PubMedPubMedCentralGoogle Scholar
  86. McLachlan SM, Rapoport B. Thyroid stimulating monoclonal antibodies: overcoming the road blocks and the way forward. Clin Endocrinol (Oxf). 2004;61(1):10–8.CrossRefGoogle Scholar
  87. McLachlan SM, Rapoport B. Thyroid peroxidase as an autoantigen. Thyroid. 2007;17(10):939–48.PubMedCrossRefPubMedCentralGoogle Scholar
  88. McLachlan SM, Rapoport B. Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid. 2013;23(1):14–24.PubMedPubMedCentralCrossRefGoogle Scholar
  89. McLeod DS, Cooper DS, Ladenson PW, Ain KB, Brierley JD, Fein HG, et al. Prognosis of differentiated thyroid cancer in relation to serum thyrotropin and thyroglobulin antibody status at time of diagnosis. Thyroid. 2014;24(1):35–42.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Medici M, Porcu E, Pistis G, Teumer A, Brown SJ, Jensen RA, et al. Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet. 2014;10(2):e1004123.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Metcalfe RA, Oh YS, Stroud C, Arnold K, Weetman AP. Analysis of antibody-dependent cell-mediated cytotoxicity in autoimmune thyroid disease. Autoimmunity. 1997;25(2):65–72.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Minich WB, Lenzner C, Morgenthaler NG. Antibodies to TSH-receptor in thyroid autoimmune disease interact with monoclonal antibodies whose epitopes are broadly distributed on the receptor. Clin Exp Immunol. 2004;136(1):129–36.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mizokami T, Salvi M, Wall JR. Eye muscle antibodies in Graves’ ophthalmopathy: pathogenic or secondary epiphenomenon? J Endocrinol Invest. 2004;27(3):221–9.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Morgenthaler NG, Pampel I, Aust G, Seissler J, Scherbaum WA. Application of a bioassay with CHO cells for the routine detection of stimulating and blocking autoantibodies to the TSH-receptor. Horm Metab Res. 1998;30(3):162–8.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Morgenthaler NG, Minich WB, Willnich M, Bogusch T, Hollidt JM, Weglohner W, et al. Affinity purification and diagnostic use of TSH receptor autoantibodies from human serum. Mol Cell Endocrinol. 2003;212(1–2):73–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Morris III JC, Hay ID, Nelson RE, Jiang NS. Clinical utility of thyrotropin-receptor antibody assays: comparison of radioreceptor and bioassay methods. Mayo Clin Proc. 1988;63(7):707–17.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Morshed SA, Davies TF. Graves’ disease mechanisms: the role of stimulating, blocking, and cleavage region TSH receptor antibodies. Horm Metab Res. 2015;47(10):727–34.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Munro DS, Dirmikis SM, Humphries H, Smith T, Broadhead GD. The role of thyroid stimulating immunoglobulins of Graves’s disease in neonatal thyrotoxicosis. Br J Obstet Gynaecol. 1978;85(11):837–43.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Netzel BC, Grebe SK, Carranza Leon BG, Castro MR, Clark PM, Hoofnagle AN, et al. Thyroglobulin (Tg) testing revisited: Tg assays, TgAb assays, and correlation of results with clinical outcomes. J Clin Endocrinol Metab. 2015;100(8):E1074–83.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Niccoli P, Fayadat L, Panneels V, Lanet J, Franc JL. Human thyroperoxidase in its alternatively spliced form (TPO2) is enzymatically inactive and exhibits changes in intracellular processing and trafficking. J Biol Chem. 1997;272(47):29487–92.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Nielsen CH, Leslie RG, Jepsen BS, Kazatchkine MD, Kaveri SV, Fischer E. Natural autoantibodies and complement promote the uptake of a self antigen, human thyroglobulin, by B cells and the proliferation of thyroglobulin-reactive CD4(+) T cells in healthy individuals. Eur J Immunol. 2001;31(9):2660–8.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Nordyke RA, Gilbert Jr FI, Miyamoto LA, Fleury KA. The superiority of antimicrosomal over antithyroglobulin antibodies for detecting Hashimoto’s thyroiditis. Arch Intern Med. 1993;153(7):862–5.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Nye L, Pontes de Carvalho LC, Roitt IM. Restrictions in the response to autologous thyroglobulin in the human. Clin Exp Immunol. 1980;41(2):252–63.PubMedPubMedCentralGoogle Scholar
  104. Ochi Y, Kajita Y, Takasu N, Nagata A. Sensitive thyroid stimulating antibody (TSAb) assay using polyethylene glycol (PEG) – a review. J Immunoassay Immunochem. 2002;23(4):461–70.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Oda Y, Sanders J, Evans M, Kiddie A, Munkley A, James C, et al. Epitope analysis of the human thyrotropin (TSH) receptor using monoclonal antibodies. Thyroid. 2000;10(12):1051–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Ott J, Aust S, Kurz C, Nouri K, Wirth S, Huber JC, et al. Elevated antithyroid peroxidase antibodies indicating Hashimoto’s thyroiditis are associated with the treatment response in infertile women with polycystic ovary syndrome. Fertil Steril. 2010;94(7):2895–7.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Ott J, Promberger R, Kober F, Neuhold N, Tea M, Huber JC, et al. Hashimoto’s thyroiditis affects symptom load and quality of life unrelated to hypothyroidism: a prospective case–control study in women undergoing thyroidectomy for benign goiter. Thyroid. 2011;21(2):161–7.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Outschoorn IM, Talor MV, Burek CL, Hoffman WH, Rose NR. Heritability analysis of IgG4 antibodies in autoimmune thyroid disease. Autoimmunity. 2014;47(5):320–6.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Pani F, Atzori F, Baghino G, Boi F, Tanca L, Ionta MT, et al. Thyroid dysfunction in patients with metastatic carcinoma treated with sunitinib: is thyroid autoimmunity involved? Thyroid. 2015;25(11):1255–61.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pedersen IB, Handberg A, Knudsen N, Heickendorff L, Laurberg P. Assays for thyroid-stimulating hormone receptor antibodies employing different ligands and ligand partners may have similar sensitivity and specificity but are not interchangeable. Thyroid. 2010;20(2):127–33.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Pfeilschifter J, Ziegler R. Smoking and endocrine ophthalmopathy: impact of smoking severity and current vs lifetime cigarette consumption. Clin Endocrinol (Oxf). 1996;45(4):477–81.CrossRefGoogle Scholar
  112. Pichurin P, Guo J, Yan X, Rapoport B, McLachlan SM. Human monoclonal autoantibodies to B-cell epitopes outside the thyroid peroxidase autoantibody immunodominant region. Thyroid. 2001;11(4):301–13.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Pop VJ, de Vries E, van Baar AL, Waelkens JJ, de Rooy HA, Horsten M, et al. Maternal thyroid peroxidase antibodies during pregnancy: a marker of impaired child development? J Clin Endocrinol Metab. 1995;80(12):3561–6.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Poppe K, Glinoer D, Tournaye H, Devroey P, van Steirteghem A, Kaufman L, et al. Assisted reproduction and thyroid autoimmunity: an unfortunate combination? J Clin Endocrinol Metab. 2003;88(9):4149–52.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Poppe K, Velkeniers B, Glinoer D. The role of thyroid autoimmunity in fertility and pregnancy. Nat Clin Pract Endocrinol Metab. 2008;4(7):394–405.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Portmann L, Hamada N, Heinrich G, DeGroot LJ. Anti-thyroid peroxidase antibody in patients with autoimmune thyroid disease: possible identity with anti-microsomal antibody. J Clin Endocrinol Metab. 1985;61(5):1001–3.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Portulano C, Paroder-Belenitsky M, Carrasco N. The Na+/I- symporter (NIS): mechanism and medical impact. Endocr Rev. 2014;35(1):106–49.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Prabhakar BS, Bahn RS, Smith TJ. Current perspective on the pathogenesis of Graves’ disease and ophthalmopathy. Endocr Rev. 2003;24(6):802–35.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM. The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies. Endocr Rev. 1998;19(6):673–716.PubMedPubMedCentralGoogle Scholar
  120. Rapoport B, Aliesky HA, Chen CR, McLachlan SM. Evidence that TSH receptor A-subunit multimers, not monomers, drive antibody affinity maturation in Graves’ disease. J Clin Endocrinol Metab. 2015;100(6):E871–5.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Raspe E, Costagliola S, Ruf J, Mariotti S, Dumont JE, Ludgate M. Identification of the thyroid Na+/I- cotransporter as a potential autoantigen in thyroid autoimmune disease. Eur J Endocrinol. 1995;132(4):399–405.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Roitt IM, Doniach D, Campbell PN, Hudson RV. Auto-antibodies in Hashimoto’s disease (lymphadenoid goitre). Lancet. 1956;271(6947):820–1.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Roitt IM, Campbell PN, Doniach D. The nature of the thyroid auto-antibodies present in patients with Hashimoto’s thyroiditis (lymphadenoid goitre). Biochem J. 1958;69(2):248–56.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rose NR, Witebsky E. Studies on organ specificity. V. Changes in the thyroid glands of rabbits following active immunization with rabbit thyroid extracts. J Immunol. 1956;76(6):417–27.PubMedPubMedCentralGoogle Scholar
  125. Roti E, Gardini E, Minelli R, Bianconi L, Braverman LE. Prevalence of anti-thyroid peroxidase antibodies in serum in the elderly: comparison with other tests for anti-thyroid antibodies. Clin Chem. 1992;38(1):88–92.PubMedPubMedCentralGoogle Scholar
  126. Rotondi M, de Martinis ML, Coperchini F, Pignatti P, Pirali B, Ghilotti S, et al. Serum negative autoimmune thyroiditis displays a milder clinical picture compared with classic Hashimoto’s thyroiditis. Eur J Endocrinol. 2014;171(1):31–6.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Ruf J, Czarnocka B, Ferrand M, Doullais F, Carayon P. Novel routine assay of thyroperoxidase autoantibodies. Clin Chem. 1988;34(11):2231–4.PubMedPubMedCentralGoogle Scholar
  128. Sakata S, Nakamura S, Miura K. Autoantibodies against thyroid hormones or iodothyronine. Implications in diagnosis, thyroid function, treatment, and pathogenesis. Ann Intern Med. 1985;103(4):579–89.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Sanders J, Jeffreys J, Depraetere H, Richards T, Evans M, Kiddie A, et al. Thyroid-stimulating monoclonal antibodies. Thyroid. 2002;12(12):1043–50.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Sanders J, Evans M, Premawardhana LD, Depraetere H, Jeffreys J, Richards T, et al. Human monoclonal thyroid stimulating autoantibody. Lancet. 2003;362(9378):126–8.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Sanders J, Chirgadze DY, Sanders P, Baker S, Sullivan A, Bhardwaja A, et al. Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid. 2007;17(5):395–410.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Seissler J, Wagner S, Schott M, Lettmann M, Feldkamp J, Scherbaum WA, et al. Low frequency of autoantibodies to the human Na(+)/I(−) symporter in patients with autoimmune thyroid disease. J Clin Endocrinol Metab. 2000;85(12):4630–4.PubMedPubMedCentralGoogle Scholar
  133. Shields BM, Knight BA, Hill AV, Hattersley AT, Vaidya B. Five-year follow-up for women with subclinical hypothyroidism in pregnancy. J Clin Endocrinol Metab. 2013;98(12):E1941–5.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Smith TJ. The putative role of fibroblasts in the pathogenesis of Graves’ disease: evidence for the involvement of the insulin-like growth factor-1 receptor in fibroblast activation. Autoimmunity. 2003;36(6–7):409–15.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Smooke-Praw S, Ro K, Levin O, Ituarte PH, Harari A, Yeh MW. Thyroglobulin antibody levels do not predict disease status in papillary thyroid cancer. Clin Endocrinol (Oxf). 2014;81(2):271–5.CrossRefGoogle Scholar
  136. Song YH, Li Y, Maclaren NK. The nature of autoantigens targeted in autoimmune endocrine diseases. Immunol Today. 1996;17(5):232–8.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Southgate K, Creagh F, Teece M, Kingswood C, Rees SB. A receptor assay for the measurement of TSH receptor antibodies in unextracted serum. Clin Endocrinol (Oxf). 1984;20(5):539–48.CrossRefGoogle Scholar
  138. Spencer CA. Clinical review: clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011;96(12):3615–27.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Spencer C. Commentary on: implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position statement. Thyroid. 2013;23(10):1190–2.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Spencer CA, Bergoglio LM, Kazarosyan M, Fatemi S, Lopresti JS. Clinical impact of thyroglobulin (Tg) and Tg autoantibody method differences on the management of patients with differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2005;90(10):5566–75.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Spencer C, Petrovic I, Fatemi S, LoPresti J. Serum thyroglobulin (Tg) monitoring of patients with differentiated thyroid cancer using sensitive (second-generation) immunometric assays can be disrupted by false-negative and false-positive serum thyroglobulin autoantibody misclassifications. J Clin Endocrinol Metab. 2014;99(12):4589–99.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Spencer L, Bubner T, Bain E, Middleton P. Screening and subsequent management for thyroid dysfunction pre-pregnancy and during pregnancy for improving maternal and infant health. Cochrane Database Syst Rev. 2015;9:CD011263.Google Scholar
  143. Stagnaro-Green A. Approach to the patient with postpartum thyroiditis. J Clin Endocrinol Metab. 2012;97(2):334–42.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Suzuki S, Mitsunaga M, Miyoshi M, Hirakawa S, Nakagawa O, Miura H, et al. Cytophilic antithyroglobulin antibody and antibody-dependent monocyte-mediated cytotoxicity in Hashimoto’s thyroiditis. J Clin Endocrinol Metab. 1980;51(3):446–53.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Takasu N, Matsushita M. Changes of TSH-stimulation blocking antibody (TSBAb) and thyroid stimulating antibody (TSAb) over 10 years in 34 TSBAb-positive patients with hypothyroidism and in 98 TSAb-positive Graves’ patients with hyperthyroidism: reevaluation of TSBAb and TSAb in TSH-receptor-antibody (TRAb)-positive patients. J Thyroid Res. 2012;2012:182176.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Tandon N, Yan SL, Morgan BP, Weetman AP. Expression and function of multiple regulators of complement activation in autoimmune thyroid disease. Immunology. 1994;81(4):643–7.PubMedPubMedCentralGoogle Scholar
  147. Targovnik HM. Thyroglobulin structure, function and biosynthesis. In: Braverman LE, Cooper DS, editors. The thyroid – a fundamental and clinical text. Philadelphia: Lippincott, Williams and Wilkins; 2013. p. 74–92.Google Scholar
  148. Thangaratinam S, Tan A, Knox E, Kilby MD, Franklyn J, Coomarasamy A. Association between thyroid autoantibodies and miscarriage and preterm birth: meta-analysis of evidence. BMJ. 2011;342:d2616.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Ticconi C, Giuliani E, Veglia M, Pietropolli A, Piccione E, Di SN. Thyroid autoimmunity and recurrent miscarriage. Am J Reprod Immunol. 2011;66(6):452–9.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Toccafondi RS, Aterini S, Medici MA, Rotella CM, Tanini A, Zonefrati R. Thyroid-stimulating antibody (TSab) detected in sera of Graves’ patients using human thyroid cell cultures. Clin Exp Immunol. 1980;40(3):532–9.PubMedPubMedCentralGoogle Scholar
  151. Tomisti L, Urbani C, Rossi G, Latrofa F, Sardella C, Manetti L, et al. The presence of anti-thyroglobulin (TgAb) and/or anti-thyroperoxidase antibodies (TPOAb) does not exclude the diagnosis of type 2 amiodarone-induced thyrotoxicosis. J Endocrinol Invest. 2016;39:585.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Torino F, Barnabei A, Paragliola R, Baldelli R, Appetecchia M, Corsello SM. Thyroid dysfunction as an unintended side effect of anticancer drugs. Thyroid. 2013;23(11):1345–66.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tozzoli R, D'Aurizio F, Ferrari A, Castello R, Metus P, Caruso B, et al. The upper reference limit for thyroid peroxidase autoantibodies is method-dependent: a collaborative study with biomedical industries. Clin Chim Acta. 2016;452:61–5.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Trotter WR, Belyavin G, Waddams A. Precipitating and complement-fixing antibodies in Hashimoto’s disease. Proc R Soc Med. 1957;50(11):961–2.PubMedPubMedCentralGoogle Scholar
  155. Unuane D, Velkeniers B, Anckaert E, Schiettecatte J, Tournaye H, Haentjens P, et al. Thyroglobulin autoantibodies: is there any added value in the detection of thyroid autoimmunity in women consulting for fertility treatment? Thyroid. 2013;23(8):1022–8.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Vanderpump MP, Tunbridge WM, French JM, Appleton D, Bates D, Clark F, et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf). 1995;43(1):55–68.CrossRefGoogle Scholar
  157. Verburg FA, Luster M, Cupini C, Chiovato L, Duntas L, Elisei R, et al. Implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position statement. Thyroid. 2013;23(10):1211–25.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Villanueva R, Inzerillo AM, Tomer Y, Barbesino G, Meltzer M, Concepcion ES, et al. Limited genetic susceptibility to severe Graves’ ophthalmopathy: no role for CTLA-4 but evidence for an environmental etiology. Thyroid. 2000;10(9):791–8.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Vissenberg R, Manders VD, Mastenbroek S, Fliers E, Afink GB, Ris-Stalpers C, et al. Pathophysiological aspects of thyroid hormone disorders/thyroid peroxidase autoantibodies and reproduction. Hum Reprod Update. 2015;21(3):378–87.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Vitti P, Chiovato L, Lopez G, Lombardi A, Santini F, Mammoli C, et al. Measurement of TSAb directly in serum using FRTL-5 cells. J Endocrinol Invest. 1988;11(4):313–7.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Vitti P, Elisei R, Tonacchera M, Chiovato L, Mancusi F, Rago T, et al. Detection of thyroid-stimulating antibody using Chinese hamster ovary cells transfected with cloned human thyrotropin receptor. J Clin Endocrinol Metab. 1993;76(2):499–503.PubMedPubMedCentralGoogle Scholar
  162. Vos XG, Smit N, Endert E, Tijssen JG, Wiersinga WM. Frequency and characteristics of TBII-seronegative patients in a population with untreated Graves’ hyperthyroidism: a prospective study. Clin Endocrinol (Oxf). 2008;69(2):311–7.CrossRefGoogle Scholar
  163. Walsh JP, Bremner AP, Feddema P, Leedman PJ, Brown SJ, O’Leary P. Thyrotropin and thyroid antibodies as predictors of hypothyroidism: a 13-year, longitudinal study of a community-based cohort using current immunoassay techniques. J Clin Endocrinol Metab. 2010;95(3):1095–104.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Watson PF, Ajjan RA, Phipps J, Metcalfe R, Weetman AP. A new chemiluminescent assay for the rapid detection of thyroid stimulating antibodies in Graves’ disease. Clin Endocrinol (Oxf). 1998;49(5):577–81.CrossRefGoogle Scholar
  165. Watt T, Hegedus L, Bjorner JB, Groenvold M, Bonnema SJ, Rasmussen AK, et al. Is thyroid autoimmunity per se a determinant of quality of life in patients with autoimmune hypothyroidism? Eur Thyroid J. 2012;1(3):186–92.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Weetman AP. Autoimmune thyroid disease: propagation and progression. Eur J Endocrinol. 2003;148(1):1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Weetman AP, McGregor AM. Autoimmune thyroid disease: developments in our understanding. Endocr Rev. 1984;5(2):309–55.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Weetman AP, Tse CK, Randall WR, Tsim KW, Barnard EA. Acetylcholinesterase antibodies and thyroid autoimmunity. Clin Exp Immunol. 1988;71(1):96–9.PubMedPubMedCentralGoogle Scholar
  169. Weetman AP, Black CM, Cohen SB, Tomlinson R, Banga JP, Reimer CB. Affinity purification of IgG subclasses and the distribution of thyroid auto-antibody reactivity in Hashimoto’s thyroiditis. Scand J Immunol. 1989;30(1):73–82.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Winther KH, Cramon P, Watt T, Bjorner JB, Ekholm O, Feldt-Rasmussen U, et al. Disease-specific as well as generic quality of life is widely impacted in autoimmune hypothyroidism and improves during the first six months of levothyroxine therapy. PLoS One. 2016;11(6):e0156925.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Yoshida H, Amino N, Yagawa K, Uemura K, Satoh M, Miyai K, et al. Association of serum antithyroid antibodies with lymphocytic infiltration of the thyroid gland: studies of seventy autopsied cases. J Clin Endocrinol Metab. 1978;46(6):859–62.PubMedCrossRefPubMedCentralGoogle Scholar
  172. Yoshida A, Hisatome I, Taniguchi S, Shirayoshi Y, Yamamoto Y, Miake J, et al. Pendrin is a novel autoantigen recognized by patients with autoimmune thyroid diseases. J Clin Endocrinol Metab. 2009;94(2):442–8.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Zophel K, Wunderlich G, Kotzerke J, von Landenberg LP, Roggenbuck D. M22 based (manual) ELISA for TSH-receptor antibody (TRAb) measurement is more sensitive than 2nd generation TRAb assays. Clin Chim Acta. 2009;403(1–2):266.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Cardiovascular and Diabetes ResearchUniversity of Leeds, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM)LeedsUK
  2. 2.School of Medicine and Biomedical SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations