Advertisement

New (Medical) Treatment for Thyroid Carcinoma

  • Sebastiano Filetti
  • Steven I. Sherman
Reference work entry
Part of the Endocrinology book series (ENDOCR)

Abstract

Treatment of locally advanced/metastatic thyroid cancer patients poses several challenges. The disease course can be rapidly progressive or can spontaneously remain stable over time. Periodic (3–12 months) imaging assessments are indicated. The tumor burden, location, and the pace of volume growth should be taken into account for treatment decision (Fig. 1). When small disease burden and no symptomatic/threatening lesion are present, the patient should be actively surveilled. In case of single/few threatening lesions, local treatment should be preferred. Large tumor burden and/or rapidly (<12 months) progressing disease are indicators for systemic treatments (Haugen et al. 2016). Approved (Tables 1 and 2) and investigational drugs (Table 3) for the treatment of thyroid cancer are presented in this chapter. Figure 2 shows all the cited kinase inhibitors and their targets in thyroid cancer cells and in endothelial cells.

Keywords

Advanced Thyroid Cancer Tyrosine Kinase Inhibitors Antiangiogenic Drugs MAPK Pathway Phosphatidylinositol 3-Kinase/AKT Pathway Immunotherapy 

References

  1. Akslen LA, Livolsi VA. Increased angiogenesis in papillary thyroid carcinoma but lack of prognostic importance. Hum Pathol. 2000;31(4):439–42.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ball DW, Jin N, Rosen DM, Dackiw A, Sidransky D, Xing M, et al. Selective growth inhibition in BRAF mutant thyroid cancer by the mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244. J Clin Endocrinol Metab. 2007;92(12):4712–8.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bastman JJ, Serracino HS, Zhu Y, Koenig MR, Mateescu V, Sams SB, et al. Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer. J Clin Endocrinol Metab. 2016;101(7):2863–73.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Blevins DP, Dadu R, Hu M, Baik C, Balachandran D, Ross W, et al. Aerodigestive fistula formation as a rare side effect of antiangiogenic tyrosine kinase inhibitor therapy for thyroid cancer. Thyroid. 2014;24(5):918–22.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Brandhuber B, Haas J, Tuch B, Ebata K, Bouhana K, McFaddin E, et al. The development of a potent, KDR/VEGFR2-sparing RET kinase inhibitor for treating patients with RET-dependent cancers. Eur J Cancer. 2016;69:S144.CrossRefGoogle Scholar
  6. Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brose MS, Troxel AB, Yarchoan M, Cohen AB, Harlacker K, Dyanick NA, et al. A phase II study of everolimus (E) and sorafenib (S) in patients (PTS) with metastatic differentiated thyroid cancer who have progressed on sorafenib alone. J Clin Oncol. 2015;33(15):6072.Google Scholar
  8. Brose MS, Cabanillas ME, Cohen EE, Wirth LJ, Riehl T, Yue H, et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(9):1272–82.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brose MS, Worden FP, Newbold KL, Guo M, Hurria A. Effect of age on the efficacy and safety of lenvatinib in radioiodine-refractory differentiated thyroid cancer in the phase III SELECT trial. J Clin Oncol. 2017;35(23):2692–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cabanillas ME, Patel A, Danysh BP, Dadu R, Kopetz S, Falchook G. BRAF inhibitors: experience in thyroid cancer and general review of toxicity. Horm Cancer. 2015;6(1):21–36.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cabanillas ME, Busaidy NL, Zafereo M, Waguespack SG, Hu MI, Hofmann MC, et al. Neoadjuvant vemurafenib in patients with locally advanced papillary thyroid cancer (PTC). Eur Thyroid J. 2017;6(Suppl 1):38.Google Scholar
  12. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.CrossRefGoogle Scholar
  13. Cao Y. Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis. Trends Mol Med. 2013;19(8):460–73.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62:7284–90.PubMedPubMedCentralGoogle Scholar
  15. Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM, et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst. 2006;98(5):326–34.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121(12):4700–11.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cheng L, Jin Y, Liu M, Ruan M, Chen L. HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E. Oncotarget. 2017;8(12):19843–54.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Colli LM, Machiela MJ, Myers TA, Jessop L, Yu K, Chanock SJ. Burden of nonsynonymous mutations among TCGA cancers and candidate immune checkpoint inhibitor responses. Cancer Res. 2016;76(13):3767–72.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cunha LL, Marcello MA, Rocha-Santos V, Ward LS. Immunotherapy against endocrine malignancies: immune checkpoint inhibitors lead the way. Endocr-Relat Cancer. 2017;24(12):T261–81.Google Scholar
  21. Dadu R, Shah K, Busaidy NL, Waguespack SG, Habra MA, Ying AK, et al. Efficacy and tolerability of vemurafenib in patients with BRAF(V600E) -positive papillary thyroid cancer: M.D. Anderson cancer center off label experience. J Clin Endocrinol Metab. 2015;100(1):E77–81.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dadu R, Vilalabos PA, Para Cuentas ER, Rodriguez Canales J, Wistuba II, Zhou S, et al. Anaplastic thyroid cancer (ATC) is a hot immunogenic environment: immunoprofiling of a large cohort of ATC tumors. Thyroid. 2016;26(S1):OR-12.Google Scholar
  23. Dhar DK, Kubota H, Kotoh T, Tabara H, Watanabe R, Tachibana M, et al. Tumor vascularity predicts recurrence in differentiated thyroid carcinoma. Am J Surg. 1998;176(5):442–7.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Durante C, Tallini G, Puxeddu E, Sponziello M, Moretti S, Ligorio C, et al. BRAFV600E mutation and expression of proangiogenic molecular markers in papillary thyroid carcinomas. Eur J Endocrinol. 2011;165(3):455–63.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Elisei R, Schlumberger MJ, Muller SP, Schoffski P, Brose MS, Shah MH, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013;31(29):3639–46.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fagin JA, Wells Jr SA. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375(11):1054–67.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Falchook GS, Long GV, Kurzrock R, Kim KB, Arkenau TH, Brown MP, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379(9829):1893–901.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Falchook GS, Millward M, Hong D, Naing A, Piha-Paul S, Waguespack SG, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid. 2015;25(1):71–7.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fallahi P, Mazzi V, Vita R, Ferrari SM, Materazzi G, Galleri D, et al. New therapies for dedifferentiated papillary thyroid cancer. Int J Mol Sci. 2015;16(3):6153–82.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694–703.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fox E, Widemann BC, Chuk MK, Marcus L, Aikin A, Whitcomb PO, et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Cancer Res. 2013;19(15):4239–48.PubMedPubMedCentralCrossRefGoogle Scholar
  33. French JD, Bible K, Spitzweg C, Haugen BR, Ryder M. Leveraging the immune system to treat advanced thyroid cancers. Lancet Diabetes Endocrinol. 2017;5(6):469–81.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Ghatalia P, Je Y, Kaymakcalan MD, Sonpavde G, Choueiri TK. QTc interval prolongation with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Br J Cancer. 2015;112(2):296–305.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Halilovic E, Solit DB. Therapeutic strategies for inhibiting oncogenic BRAF signaling. Curr Opin Pharmacol. 2008;8(4):419–26.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Harris PJ, Bible KC. Emerging therapeutics for advanced thyroid malignancies: rationale and targeted approaches. Expert Opin Investig Drugs. 2011;20(10):1357–75.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Haugen BR. Redifferentiation therapy in advanced thyroid cancer. Curr Drug Targets Immune Endocr Metabol Disord. 2004;4(3):175–80.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hayes DN, Lucas AS, Tanvetyanon T, Krzyzanowska MK, Chung CH, Murphy B, et al. Phase II efficacy and pharmacogenomic study of selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma (IRPTC) with or without follicular elements. Clin Cancer Res. 2012;18(7):2056–65.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hyman DM, Laetsch TW, Kummar S, DuBois SG, Farago AF, Pappo AS, et al. The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric TRK fusion cancers. J Clin Oncol. 2017; 35(18_suppl):LBA2501-LBA.CrossRefGoogle Scholar
  42. Ishiwata T, Iino Y, Takei H, Oyama T, Morishita Y. Tumor angiogenesis as an independent prognostic indicator in human papillary thyroid carcinoma. Oncol Rep. 1998;5(6):1343–8.PubMedPubMedCentralGoogle Scholar
  43. Iyer P, Dadu R, Busaidy N, Ferrarotto R, Gule-Monroe M, Lu C, et al. Harvesting high-hanging fruit: Targeted therapy for BRAF mutant (BRAFm) and BRAF wild-type (BRAFwt) anaplastic thyroid cancer (ATC). Thyroid. 2016;26(Suppl 1):A64–A5.Google Scholar
  44. Jaber T, Waguespack SG, Cabanillas ME, Vu T, Santos EB, Dadu R, et al. Efficacy of targeted therapy in resensitization to radioactive iodine (RAI) in advanced thyroid cancer: The MD Anderson experience. Endocr Rev. 2017;38(3 Supplement):OR39–6.Google Scholar
  45. Jebreel A, England J, Bedford K, Murphy J, Karsai L, Atkin S. Vascular endothelial growth factor (VEGF), VEGF receptors expression and microvascular density in benign and malignant thyroid diseases. Int J Exp Pathol. 2007;88(4):271–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P, et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest. 2006;116(6):1561–70.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kato S, Subbiah V, Marchlik E, Elkin SK, Carter JL, Kurzrock R. RET aberrations in diverse cancers: next-generation sequencing of 4871 patients. Clin Cancer Res. 2017;23(8):1988–97.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039–49.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS. Targeting TRK family proteins in cancer. Pharmacol Ther. 2017;173:58–66.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kim KB, Cabanillas ME, Lazar AJ, Williams MD, Sanders DL, Ilagan JL, et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAF(V600E) mutation. Thyroid. 2013;23(10):1277–83.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Klein M, Vignaud JM, Hennequin V, Toussaint B, Bresler L, Plenat F, et al. Increased expression of the vascular endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2001;86(2):656–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kollipara R, Schneider B, Radovich M, Babu S, Kiel PJ. Exceptional response with immunotherapy in a patient with anaplastic thyroid cancer. Oncologist. 2017;22(10):1149–51.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Krampitz GW, Norton JA. RET gene mutations (genotype and phenotype) of multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma. Cancer. 2014;120(13):1920–31.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Laakkonen P, Waltari M, Holopainen T, Takahashi T, Pytowski B, Steiner P, et al. Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res. 2007;67(2):593–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Lamartina L, Ippolito S, Danis M, Bidault F, Borget I, Berdelou A, et al. Antiangiogenic tyrosine kinase inhibitors: occurrence and risk factors of hemoptysis in refractory thyroid cancer. J Clin Endocrinol Metab. 2016;101(7):2733–41.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–66.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lennard CM, Patel A, Wilson J, Reinhardt B, Tuman C, Fenton C, et al. Intensity of vascular endothelial growth factor expression is associated with increased risk of recurrence and decreased disease-free survival in papillary thyroid cancer. Surgery. 2001;129:552–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Li GG, Somwar R, Joseph J, Smith RS, Hayashi T, Martin L, et al. Antitumor activity of RXDX-105 in multiple cancer types with RET rearrangements or mutations. Clin Cancer Res. 2017;23(12):2981–90.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lim SM, Chang H, Yoon MJ, Hong YK, Kim H, Chung WY, et al. A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann Oncol. 2013;24(12):3089–94.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lim AM, Taylor GR, Fellowes A, Cameron L, Lee B, Hicks RJ, et al. BRAF inhibition in BRAFV600E-positive anaplastic thyroid carcinoma. J Natl Compr Canc Netw. 2016;14(3):249–54.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr-Relat Cancer. 2016;23(3):R143–55.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lorch JH, Busaidy N, Ruan DT, Janne PA, Limaye SA, Wirth LJ, et al. A phase II study of everolimus in patients with aggressive RAI refractory (RAIR) thyroid cancer (TC). J Clin Oncol. 2013;31(15):6023.Google Scholar
  63. Mancikova V, Inglada-Perez L, Curras-Freixes M, de Cubas AA, Gomez A, Leton R, et al. VEGF, VEGFR3, and PDGFRB protein expression is influenced by RAS mutations in medullary thyroid carcinoma. Thyroid. 2014;24(8):1251–5.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Marotta V, Sciammarella C, Vitale M, Colao A, Faggiano A. The evolving field of kinase inhibitors in thyroid cancer. Crit Rev Oncol Hematol. 2015;93(1):60–73.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008;122(3):664–71.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Mehnert JM, Varga A, Brose M, Aggarwal RR, Lin C-C, Prawira A, et al. Pembrolizumab for advanced papillary or follicular thyroid cancer: preliminary results from the phase 1b KEYNOTE-028 study. J Clin Oncol. 2016;34(15_suppl):6091.CrossRefGoogle Scholar
  67. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF mutant thyroid carcinomas. Cancer Discov. 2013;3(5):520–33.Google Scholar
  68. Okamoto K, Kodama K, Takase K, Sugi NH, Yamamoto Y, Iwata M, et al. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 2013;340(1):97–103.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359–71.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ouyang B, Knauf JA, Smith EP, Zhang L, Ramsey T, Yusuff N, et al. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin Cancer Res. 2006;12(6):1785–93.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Prager GW, Koperek O, Mayerhoefer ME, Muellauer L, Wrba F, Niederle B, et al. Sustained response to vemurafenib in a BRAFV600E-mutated anaplastic thyroid carcinoma patient. Thyroid. 2016;26(10):1515–6.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Rahal R, Evans EK, Hu W, Maynard M, Fleming P, DiPietro L, et al. The development of potent, selective RET inhibitors that target both wild-type RET and prospectively identified resistance mutations to multi-kinase inhibitors. Cancer Res. 2016;76(14 Supplement):2641.CrossRefGoogle Scholar
  73. Rheault TR, Stellwagen JC, Adjabeng GM, Hornberger KR, Petrov KG, Waterson AG, et al. Discovery of dabrafenib: a selective inhibitor of Raf Kinases with antitumor activity against B-Raf-driven tumors. ACS Med Chem Lett. 2013;4(3):358–62.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69(11):4885–93.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Rodriguez-Antona C, Pallares J, Montero-Conde C, Inglada-Perez L, Castelblanco E, Landa I, et al. Overexpression and activation of EGFR and VEGFR2 in medullary thyroid carcinomas is related to metastasis. Endocr Relat Cancer. 2010;17(1):7–16.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Rothenberg SM, McFadden DG, Palmer EL, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res. 2015;21(5):1028–35.Google Scholar
  77. Saji M, Ringel MD. The PI3K-Akt-mTOR pathway in initiation and progression of thyroid tumors. Mol Cell Endocrinol. 2010;321:20–8.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Sala E, Mologni L, Truffa S, Gaetano C, Bollag GE, Gambacorti-Passerini C. BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol Cancer Res. 2008;6(5):751–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Schlumberger M, Jarzab B, Elisei R, Siena S, Bastholt L. de la Fouchardiere C. Phase III randomized, double-blinded, placebo-controlled trial of sorafenib in locally advanced or metastatic patients with radioactive iodine (RAI)-refractory differentiated thyroid cancer (DTC)-exploratory analyses of patient-reported outcomes. Thyroid. 2013;23(Suppl. 1):A-49.Google Scholar
  80. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Schneider TC, de Wit D, Links TP, van Erp NP, van der Hoeven JJM, Gelderblom H, et al. Beneficial effects of the mTOR inhibitor everolimus in patients with advanced medullary thyroid carcinoma: subgroup results of a phase II trial. Int J Endocrinol. 2015;2015:348124.CrossRefGoogle Scholar
  82. Schneider TC, de Wit D, Links TP, van Erp NP, van der Hoeven JJM, Gelderblom H, et al. Everolimus in patients with advanced follicular-derived thyroid cancer: results of a phase II clinical trial. J Clin Endocr Metab. 2017;102(2):698–707.PubMedPubMedCentralGoogle Scholar
  83. Shah MH, Wei L, Wirth LJ, Daniels GA, Souza JAD, Timmers CD, et al. Results of randomized phase II trial of dabrafenib versus dabrafenib plus trametinib in BRAF-mutated papillary thyroid carcinoma. J Clin Oncol. 2017;35(15_suppl):6022.CrossRefGoogle Scholar
  84. Sharma P, Allison JP. The future of immune checkpoint therapy. Science (New York, NY). 2015;348(6230):56–61.CrossRefGoogle Scholar
  85. Sherman SI. Cytotoxic chemotherapy for differentiated thyroid carcinoma. Clin Oncol (R Coll Radiol). 2010;22:464–8.CrossRefGoogle Scholar
  86. Sherman SI. Lessons learned and questions unanswered from use of multitargeted kinase inhibitors in medullary thyroid cancer. Oral Oncol. 2013;49(7):707–10.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Sherman EJ, Ho AL, Fury MG, Baxi SS, Dunn L, Lee JS, et al. Combination of everolimus and sorafenib in the treatment of thyroid cancer: update on phase II study. J Clin Oncol. 2015;33(15):6069.Google Scholar
  88. Sherman SI, Clary DO, Elisei R, Schlumberger MJ, Cohen EE, Schoffski P, et al. Correlative analyses of RET and RAS mutations in a phase 3 trial of cabozantinib in patients with progressive, metastatic medullary thyroid cancer. Cancer. 2016;122(24):3856–64.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Sherman EJ, Dunn LA, Ho AL, Baxi SS, Ghossein RA, Fury MG, et al. Phase 2 study evaluating the combination of sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer. Cancer. 2017;123(21):4114–21.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Soh EY, Clark OH. Surgical considerations and approach to thyroid cancer. Endocrinol Metab Clin N Amer. 1996;25:115–39.CrossRefGoogle Scholar
  91. Soh EY, Eigelberger MS, Kim KJ, Wong MG, Young DM, Clark OH, et al. Neutralizing vascular endothelial growth factor activity inhibits thyroid cancer growth in vivo. Surgery. 2000;128(6):1059–65; discussion 65–6.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Spitzweg C, Bible KC, Hofbauer LC, Morris JC. Advanced radioiodine-refractory differentiated thyroid cancer: the sodium iodide symporter and other emerging therapeutic targets. Lancet Diabetes Endocrinol. 2014;2(10):830–42.PubMedCrossRefPubMedCentralGoogle Scholar
  93. St Bernard R, Zheng L, Liu W, Winer D, Asa SL, Ezzat S. Fibroblast growth factor receptors as molecular targets in thyroid carcinoma. Endocrinology. 2005;146(3):1145–53.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Subbiah V, Roszik J. Towards precision oncology in RET-aberrant cancers. Cell Cycle. 2017;16(9):813–4.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria J-C, et al. Efficacy of dabrafenib (D) and trametinib (T) in patients (pts) with BRAF V600E–mutated anaplastic thyroid cancer (ATC). J Clin Oncol. 2017;35(15_suppl):6023.CrossRefGoogle Scholar
  96. Takahashi S, Kiyota N, Yamazaki T, Chayahara N, Nakano K, Inagaki L, et al. Phase II study of lenvatinib in patients with differentiated, medullary, and anaplastic thyroid cancer: final analysis results. J Clin Oncol. 2016;34:6088.Google Scholar
  97. Tang C, Welsh JW, de Groot P, Massarelli E, Chang JY, Hess KR, et al. Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells. Clin Cancer Res. 2017;23(6):1388–96.CrossRefGoogle Scholar
  98. Tuttle RM, Haddad RI, Ball DW, Byrd D, Dickson P, Duh QY, et al. Thyroid carcinoma, version 2.2014. J Natl Compr Canc Netw. 2014;12(12):1671–80; quiz 80.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Verrienti A, Tallini G, Colato C, Boichard A, Checquolo S, Pecce V, et al. RET mutation and increased angiogenesis in medullary thyroid carcinomas. Endocr-Relat Cancer. 2016;23(8):665–76.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Verschraegen CF, Rehman H, Pulluri B, DeKay J, Barry M, Folefac E, et al. When clinical trial participation is not an option in the era of personalized medicine: the case of two patients. Oncology. 2017;92(1):55–60.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Vieira JM, Santos SCR, Espadinha C, Correia I, Vag T, Casalou C, et al. Expression of vascular endothelial growth factor (VEGF) and its receptors in thyroid carcinomas of follicular origin: a potential autocrine loop. Eur J Endocrinol. 2005;153(5):701–9.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Chester R, Jackson JA, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002;62(16):4645–55.PubMedPubMedCentralGoogle Scholar
  103. Wells Jr SA, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41.PubMedPubMedCentralCrossRefGoogle Scholar
  104. White PS, Pudusseri A, Lee SL, Eton O. Intermittent dosing of dabrafenib and trametinib in metastatic BRAFV600E mutated papillary thyroid cancer: two case reports. Thyroid. 2017;27(9):1201–5.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309(14):1493–501.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;33(1):42–50.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res. 2007;13(5):1576–83.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Yu XM, Lo CY, Chan WF, Lam KY, Leung P, Luk JM. Increased expression of vascular endothelial growth factor C in papillary thyroid carcinoma correlates with cervical lymph node metastases. Clin Cancer Res. 2005;11(22):8063–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Internal Medicine and Medical SpecialtiesUniversity of Rome SapienzaRomeItaly
  2. 2.Department of Endocrine Neoplasia and Hormonal DisordersUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations