Regulation of Thyroid Function, Synthesis, and Function of Thyroid Hormones

  • Theo J. VisserEmail author
Reference work entry
Part of the Endocrinology book series (ENDOCR)


Thyroid hormone (TH) is a common name for the two products secreted by thyroid follicles, namely the prohormone thyroxine (T4) as the major product and the active hormone triiodothyronine (T3) as the minor product. Most T3 is produced by deiodination of T4 in peripheral tissues. TH is essential for the development of different tissues, in particular the central nervous system, and for the function of the tissues throughout life. The secretion of thyroid hormone is regulated within the hypothalamus-pituitary thyroid axis, but the biological activity of thyroid hormone is largely regulated at the level of the target tissues.

This chapter covers various aspects of (a) the neuroendocrine regulation of thyroid function, (b) the biosynthesis of thyroid hormone, in particular T4, (c) the local regulation of bioactive TH in target tissues, and (d) the mechanisms by which T3 exerts its biological activities.


Thyroid hormone Thyroxine (T4) Triiodothyronine (T3) Thyrotropin-releasing hormone (TRH) Thyroid-stimulating hormone (TSH) Hypothalamus pituitary Thyroid gland Serum thyroid hormone-binding proteins Transporters Deiodinases Nuclear receptors 


  1. Abe T, Suzuki T, Unno M, Tokui T, Ito S. Thyroid hormone transporters: recent advances. Trends Endocrinol Metab. 2002;13:215–20.PubMedCrossRefGoogle Scholar
  2. Abplanalp J, Laczko E, Philp NJ, Neidhardt J, Zuercher J, Braun P, Schorderet DF, Munier FL, Verrey F, Berger W, Camargo SM, Kloeckener-Gruissem B. The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter. Hum Mol Genet. 2013;22:3218–26.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andersson HC, Kohn LD, Bernardini I, Blom HJ, Tietze F, Gahl WA. Characterization of lysosomal monoiodotyrosine transport in rat thyroid cells. Evidence for transport by system h. J Biol Chem. 1990;265:10950–4.PubMedGoogle Scholar
  4. Anwer MS, Stieger B. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch. 2014;466:77–89.PubMedCrossRefGoogle Scholar
  5. Astwood EB. Landmark article May 8, 1943: treatment of hyperthyroidism with thiourea and thiouracil. By E.B. Astwood. JAMA. 1984;251:1743–6.PubMedCrossRefGoogle Scholar
  6. Bargi-Souza P, Goulart-Silva F, Nunes MT. Novel aspects of T3 actions on GH and TSH synthesis and secretion: physiological implications. J Mol Endocrinol. 2017;59:R167–R78.PubMedCrossRefGoogle Scholar
  7. Bassett JH, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev. 2016;37:135–87.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Benedetti MS, Whomsley R, Baltes E, Tonner F. Alteration of thyroid hormone homeostasis by antiepileptic drugs in humans: involvement of glucuronosyltransferase induction. Eur J Clin Pharmacol. 2005;61:863–72.PubMedCrossRefGoogle Scholar
  9. Benvenga S. Thyroid hormone transport proteins and the physiology of hormone binding. In: Braverman LE, Utiger RD, editors. Werner & Ingbar’s the thyroid. Philadelphia: Lippincott Williams & Wilkins; 2012.Google Scholar
  10. Bernal J. Thyroid hormones in brain development and function. In: DeGroot L, editor. Thyroid disease manager; 2015. Scholar
  11. Bernal J, Guadano-Ferraz A, Morte B. Thyroid hormone transporters-functions and clinical implications. Nat Rev Endocrinol. 2015;11:690.PubMedCrossRefGoogle Scholar
  12. Bianco AC, McAninch EA. The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol. 2013;1:250–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23:38–89.PubMedCrossRefGoogle Scholar
  14. Bonomi M, Busnelli M, Beck-Peccoz P, Costanzo D, Antonica F, Dolci C, Pilotta A, Buzi F, Persani L. A family with complete resistance to thyrotropin-releasing hormone. N Engl J Med. 2009;360:731–4.PubMedCrossRefGoogle Scholar
  15. Botta R, Lisi S, Rotondo Dottore G, Vitti P, Marino M. Binding of thyroglobulin (Tg) to the low-density lipoprotein receptor-associated protein (RAP) during the biosynthetic pathway prevents premature Tg interactions with sortilin. J Endocrinol Investig. 2017;40:991–7.CrossRefGoogle Scholar
  16. Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122:3035–43.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Carvalho DP, Dupuy C. Thyroid hormone biosynthesis and release. Mol Cell Endocrinol. 2017;458:6–15.PubMedCrossRefGoogle Scholar
  18. Coppola M, Glinni D, Moreno M, Cioffi F, Silvestri E, Goglia F. Thyroid hormone analogues and derivatives: actions in fatty liver. World J Hepatol. 2014;6:114–29.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Davies TF, Ando T, Lin RY, Tomer Y, Latif R. Thyrotropin receptor-associated diseases: from adenomata to Graves disease. J Clin Invest. 2005;115:1972–83.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol. 2016;12:111–21.CrossRefPubMedGoogle Scholar
  21. Dumitrescu AM, Refetoff S. The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta. 2013;1830:3987–4003.PubMedCrossRefGoogle Scholar
  22. Dumitrescu AM, Liao XH, Abdullah MS, Lado-Abeal J, Majed FA, Moeller LC, Boran G, Schomburg L, Weiss RE, Refetoff S. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet. 2005;37:1247–52.PubMedCrossRefGoogle Scholar
  23. Fliers E, Alkemade A, Wiersinga WM, Swaab DF. Hypothalamic thyroid hormone feedback in health and disease. Prog Brain Res. 2006;153:189–207.CrossRefPubMedGoogle Scholar
  24. Fonseca TL, Correa-Medina M, Campos MP, Wittmann G, Werneck-de-Castro JP, Arrojo e Drigo R, Mora-Garzon M, Ueta CB, Caicedo A, Fekete C, Gereben B, Lechan RM, Bianco AC. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J Clin Invest. 2013;123:1492–500.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Friedrichs B, Tepel C, Reinheckel T, Deussing J, von Figura K, Herzog V, Peters C, Saftig P, Brix K. Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest. 2003;111:1733–45.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Friesema EC, Docter R, Moerings EP, Stieger B, Hagenbuch B, Meier PJ, Krenning EP, Hennemann G, Visser TJ. Identification of thyroid hormone transporters. Biochem Biophys Res Commun. 1999;254:497–501.PubMedCrossRefGoogle Scholar
  27. Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 2003;278:40128–35.PubMedCrossRefGoogle Scholar
  28. Friesema EC, Kuiper GG, Jansen J, Visser TJ, Kester MH. Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism. Mol Endocrinol. 2006;20:2761–72.PubMedCrossRefGoogle Scholar
  29. Friesema EC, Jansen J, Jachtenberg JW, Visser WE, Kester MH, Visser TJ. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol. 2008;22:1357–69.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Garcia M, Gonzalez de Buitrago J, Jimenez-Roses M, Pardo L, Hinkle PM, Moreno JC. Central hypothyroidism due to a TRHR mutation causing impaired ligand affinity and transactivation of Gq. J Clin Endocrinol Metab. 2017;102:2433–42.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeold A, Bianco AC. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29:898–938.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gnidehou S, Caillou B, Talbot M, Ohayon R, Kaniewski J, Noel-Hudson MS, Morand S, Agnangji D, Sezan A, Courtin F, Virion A, Dupuy C. Iodotyrosine dehalogenase 1 (DEHAL1) is a transmembrane protein involved in the recycling of iodide close to the thyroglobulin iodination site. FASEB J. 2004;18:1574–6.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Groeneweg S, Peeters RP, Visser TJ, Visser WE. Triiodothyroacetic acid in health and disease. J Endocrinol. 2017;234:R99–R121.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hagenbuch B. Cellular entry of thyroid hormones by organic anion transporting polypeptides. Best Pract Res Clin Endocrinol Metab. 2007;21:209–21.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Halestrap AP. The SLC16 gene family – structure, role and regulation in health and disease. Mol Asp Med. 2013;34:337–49.CrossRefGoogle Scholar
  36. Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev. 2001;22:451–76.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Heuer H, Visser TJ. Minireview: pathophysiological importance of thyroid hormone transporters. Endocrinology. 2009;150:1078–83.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Heuer H, Schafer MK, Bauer K. The thyrotropin-releasing hormone-degrading ectoenzyme: the third element of the thyrotropin-releasing hormone-signaling system. Thyroid. 1998;8:915–20.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hoefig CS, Renko K, Piehl S, Scanlan TS, Bertoldi M, Opladen T, Hoffmann GF, Klein J, Blankenstein O, Schweizer U, Kohrle J. Does the aromatic L-amino acid decarboxylase contribute to thyronamine biosynthesis? Mol Cell Endocrinol. 2012;349:195–201.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U, Mittag J, Kohrle J. Biosynthesis of 3-iodothyronamine from T4 in murine intestinal tissue. Endocrinology. 2015;156:4356–64.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hoefig CS, Zucchi R, Kohrle J. Thyronamines and derivatives: physiological relevance, pharmacological actions, and future research directions. Thyroid. 2016;26:1656–73.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Holzer G, Roux N, Laudet V. Evolution of ligands, receptors and metabolizing enzymes of thyroid signaling. Mol Cell Endocrinol. 2017;459:5–13.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hood A, Allen ML, Liu Y, Liu J, Klaassen CD. Induction of T(4) UDP-GT activity, serum thyroid stimulating hormone, and thyroid follicular cell proliferation in mice treated with microsomal enzyme inducers. Toxicol Appl Pharmacol. 2003;188:6–13.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hsu SY, Nakabayashi K, Bhalla A. Evolution of glycoprotein hormone subunit genes in bilateral metazoa: identification of two novel human glycoprotein hormone subunit family genes, GPA2 and GPB5. Mol Endocrinol. 2002;16:1538–51.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hugo SE, Cruz-Garcia L, Karanth S, Anderson RM, Stainier DY, Schlegel A. A monocarboxylate transporter required for hepatocyte secretion of ketone bodies during fasting. Genes Dev. 2012;26:282–93.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Joseph-Bravo P, Jaimes-Hoy L, Uribe RM, Charli JL. 60 years of neuroendocrinology: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J Endocrinol. 2015;226:T85–T100.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Joseph-Bravo P, Jaimes-Hoy L, Charli JL. Advances in TRH signaling. Rev Endocr Metab Disord. 2016;17:545–58.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Karponis D, Ananth S. The role of thyrostimulin and its potential clinical significance. Endocr Regul. 2017;51:117–28.PubMedCrossRefGoogle Scholar
  49. Kato Y, Ikushiro S, Emi Y, Tamaki S, Suzuki H, Sakaki T, Yamada S, Degawa M. Hepatic UDP-glucuronosyltransferases responsible for glucuronidation of thyroxine in humans. Drug Metab Dispos. 2008;36:51–5.PubMedCrossRefGoogle Scholar
  50. Kersseboom S, van Gucht ALM, van Mullem A, Brigante G, Farina S, Carlsson B, Donkers JM, van de Graaf SFJ, Peeters RP, Visser TJ. Role of the bile acid transporter SLC10A1 in liver targeting of the lipid-lowering thyroid hormone analog eprotirome. Endocrinology. 2017;158:3307–18.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kester MHA, Visser TJ. Sulfation of thyroid hormones. In: Pacifici GM, Coughtrie MWH, editors. Human cytosolic sulfotransferases. Boca Raton: CRC Press; 2005.Google Scholar
  52. Kim DK, Kanai Y, Matsuo H, Kim JY, Chairoungdua A, Kobayashi Y, Enomoto A, Cha SH, Goya T, Endou H. The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location. Genomics. 2002;79:95–103.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P, Krause G. Structural-functional features of the thyrotropin receptor: a class A G-protein-coupled receptor at work. Front Endocrinol (Lausanne). 2017;8:86.CrossRefGoogle Scholar
  54. Kohrle J. Selenium and the control of thyroid hormone metabolism. Thyroid. 2005;15:841–53.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, Mangino M, Albrecht E, Wallace C, Farrall M, Johansson A, Nyholt DR, Aulchenko Y, Beckmann JS, Bergmann S, Bochud M, Brown M, Campbell H, Eurospan Consortium, Connell J, Dominiczak A, Homuth G, Lamina C, McCarthy MI, Engage Consortium, Meitinger T, Mooser V, Munroe P, Nauck M, Peden J, Prokisch H, Salo P, Salomaa V, Samani NJ, Schlessinger D, Uda M, Volker U, Waeber G, Waterworth D, Wang-Sattler R, Wright AF, Adamski J, Whitfield JB, Gyllensten U, Wilson JF, Rudan I, Pramstaller P, Watkins H, Procardis Consortium, Doering A, Wichmann HE, Kora S, Spector TD, Peltonen L, Volzke H, Nagaraja R, Vollenweider P, Caulfield M, Wtccc TI, Gieger C. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5:e1000504.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Koulouri O, Nicholas AK, Schoenmakers E, Mokrosinski J, Lane F, Cole T, Kirk J, Farooqi IS, Chatterjee VK, Gurnell M, Schoenmakers N. A novel thyrotropin-releasing hormone receptor missense mutation (P81R) in central congenital hypothyroidism. J Clin Endocrinol Metab. 2016;101:847–51.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Krause G, Hinz KM. Thyroid hormone transport across L-type amino acid transporters: what can molecular modelling tell us? Mol Cell Endocrinol. 2017;458:68–75.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Larsen PR. Type 2 iodothyronine deiodinase in human skeletal muscle: new insights into its physiological role and regulation. J Clin Endocrinol Metab. 2009;94:1893–5.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Leung AM, Pearce EN, Braverman LE. Environmental perchlorate exposure: potential adverse thyroid effects. Curr Opin Endocrinol Diabetes Obes. 2014;21:372–6.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Li W, Urban S. Entry of hepatitis B and hepatitis D virus into hepatocytes: basic insights and clinical implications. J Hepatol. 2016;64:S32–40.PubMedCrossRefGoogle Scholar
  61. Maenhaut C, Christophe D, Vassart G, Dumont J, Roger PP, Opitz R. Ontogeny, anatomy, metabolism and physiology of the thyroid. In: DeGroot L, editor. Thyroid disease manager; 2015. Scholar
  62. Mariotti S, Beck-Peccoz P. Physiology of the hypothalamic-pituitary-thyroid axis. In: DeGroot L, editor. Thyroid disease manager. 2016.
  63. Mendoza A, Hollenberg AN. New insights into thyroid hormone action. Pharmacol Ther. 2017;173:135–45.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Meruvu S, Ayers SD, Winnier G, Webb P. Thyroid hormone analogues: where do we stand in 2013? Thyroid. 2013;23:1333–44.PubMedCrossRefGoogle Scholar
  65. Moran C, Agostini M, McGowan A, Schoenmakers E, Fairall L, Lyons G, Rajanayagam O, Watson L, Offiah A, Barton J, Price S, Schwabe J, Chatterjee K. Contrasting phenotypes in resistance to thyroid hormone alpha correlate with divergent properties of thyroid hormone receptor alpha1 mutant proteins. Thyroid. 2017;27:973–82.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Moreno M, Kaptein E, Goglia F, Visser TJ. Rapid glucuronidation of tri- and tetraiodothyroacetic acid to ester glucuronides in human liver and to ether glucuronides in rat liver. Endocrinology. 1994;135:1004–9.PubMedCrossRefGoogle Scholar
  67. Moreno JC, Klootwijk W, van Toor H, Pinto G, D’Alessandro M, Leger A, Goudie D, Polak M, Gruters A, Visser TJ. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med. 2008;358:1811–8.PubMedCrossRefGoogle Scholar
  68. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94:355–82.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Muzza M, Fugazzola L. Disorders of H2O2 generation. Best Pract Res Clin Endocrinol Metab. 2017;31:225–40.PubMedCrossRefGoogle Scholar
  70. Nakabayashi K, Matsumi H, Bhalla A, Bae J, Mosselman S, Hsu SY, Hsueh AJ. Thyrostimulin, a heterodimer of two new human glycoprotein hormone subunits, activates the thyroid-stimulating hormone receptor. J Clin Invest. 2002;109:1445–52.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nakano M. Purification and properties of halogenated tyrosine and thyroid hormone transaminase from rat kidney mitochondria. J Biol Chem. 1967;242:73–81.PubMedGoogle Scholar
  72. Ng L, Kelley MW, Forrest D. Making sense with thyroid hormone – the role of T(3) in auditory development. Nat Rev Endocrinol. 2013;9:296–307.PubMedCrossRefGoogle Scholar
  73. Ng L, Cordas E, Wu X, Vella KR, Hollenberg AN, Forrest D. Age-related hearing loss and degeneration of cochlear hair cells in mice lacking thyroid hormone receptor beta1. Endocrinology. 2015;156:3853–65.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nicholas AK, Jaleel S, Lyons G, Schoenmakers E, Dattani MT, Crowne E, Bernhard B, Kirk J, Roche EF, Chatterjee VK, Schoenmakers N. Molecular spectrum of TSHbeta subunit gene defects in central hypothyroidism in the UK and Ireland. Clin Endocrinol. 2017;86:410–8.CrossRefGoogle Scholar
  75. Okada SL, Ellsworth JL, Durnam DM, Haugen HS, Holloway JL, Kelley ML, Lewis KE, Ren H, Sheppard PO, Storey HM, Waggie KS, Wolf AC, Yao LY, Webster PJ. A glycoprotein hormone expressed in corticotrophs exhibits unique binding properties on thyroid-stimulating hormone receptor. Mol Endocrinol. 2006;20:414–25.PubMedCrossRefGoogle Scholar
  76. Peeters RP, Visser TJ. Metabolism of thyroid hormone. In: DeGroot L, editor. Thyroid disease manager. 2017.
  77. Perello M, Nillni EA. The biosynthesis and processing of neuropeptides: lessons from prothyrotropin releasing hormone (proTRH). Front Biosci. 2007;12:3554–65.PubMedCrossRefGoogle Scholar
  78. Persani L, Calebiro D, Cordella D, Weber G, Gelmini G, Libri D, de Filippis T, Bonomi M. Genetics and phenomics of hypothyroidism due to TSH resistance. Mol Cell Endocrinol. 2010;322:72–82.PubMedCrossRefGoogle Scholar
  79. Pietsch CA, Scanlan TS, Anderson RJ. Thyronamines are substrates for human liver sulfotransferases. Endocrinol. 2007;148:1921–7.CrossRefGoogle Scholar
  80. Pizzagalli F, Hagenbuch B, Stieger B, Klenk U, Folkers G, Meier PJ. Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol Endocrinol. 2002;16:2283–96.PubMedCrossRefGoogle Scholar
  81. Ravera S, Reyna-Neyra A, Ferrandino G, Amzel LM, Carrasco N. The Sodium/Iodide Symporter (NIS): molecular physiology and preclinical and clinical applications. Annu Rev Physiol. 2017;79:261–89.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Refetoff S. Defects of thyroid hormone transport in serum. In: DeGroot L, editor. Thyroid disease manager. 2015a.
  83. Refetoff S. Thyroid hormone serum transport proteins. In: DeGroot L, editor. Thyroid disease manager. 2015b.
  84. Richardson SJ. Cell and molecular biology of transthyretin and thyroid hormones. Int Rev Cytol. 2007;258:137–93.PubMedCrossRefGoogle Scholar
  85. Rusu V, Hoch E, Mercader JM, Tenen DE, Gymrek M, Hartigan CR, DeRan M, von Grotthuss M, Fontanillas P, Spooner A, Guzman G, Deik AA, Pierce KA, Dennis C, Clish CB, Carr SA, Wagner BK, Schenone M, Ng MCY, Chen BH, Media Consortium, Sigma T. D. Consortium, Centeno-Cruz F, Zerrweck C, Orozco L, Altshuler DM, Schreiber SL, Florez JC, Jacobs SBR, Lander ES. Type 2 diabetes variants disrupt function of SLC16A11 through two distinct mechanisms. Cell. 2017;170:199–212 e20.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Salvatore D, Harney JW, Larsen PR. Mutation of the Secys residue 266 in human type 2 selenodeiodinase alters 75Se incorporation without affecting its biochemical properties. Biochimie. 1999;81:535–8.PubMedCrossRefGoogle Scholar
  87. Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR. Thyroid hormones and skeletal muscle – new insights and potential implications. Nat Rev Endocrinol. 2014;10:206–14.PubMedCrossRefGoogle Scholar
  88. Saraiva MJ. Transthyretin mutations in hyperthyroxinemia and amyloid diseases. Hum Mutat. 2001;17:493–503.PubMedCrossRefGoogle Scholar
  89. Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S, Lin ET, Hatton D, Zucchi R, Grandy DK. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med. 2004;10:638–42.PubMedCrossRefGoogle Scholar
  90. Schoenmakers E, Agostini M, Mitchell C, Schoenmakers N, Papp L, Rajanayagam O, Padidela R, Ceron-Gutierrez L, Doffinger R, Prevosto C, Luan J, Montano S, Lu J, Castanet M, Clemons N, Groeneveld M, Castets P, Karbaschi M, Aitken S, Dixon A, Williams J, Campi I, Blount M, Burton H, Muntoni F, O’Donovan D, Dean A, Warren A, Brierley C, Baguley D, Guicheney P, Fitzgerald R, Coles A, Gaston H, Todd P, Holmgren A, Khanna KK, Cooke M, Semple R, Halsall D, Wareham N, Schwabe J, Grasso L, Beck-Peccoz P, Ogunko A, Dattani M, Gurnell M, Chatterjee K. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest. 2010;120:4220–35.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Schoenmakers E, Carlson B, Agostini M, Moran C, Rajanayagam O, Bochukova E, Tobe R, Peat R, Gevers E, Muntoni F, Guicheney P, Schoenmakers N, Farooqi S, Lyons G, Hatfield D, Chatterjee K. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J Clin Invest. 2016;126:992–6.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Schweizer U, Johannes J, Bayer D, Braun D. Structure and function of thyroid hormone plasma membrane transporters. Eur Thyroid J. 2014;3:143–53.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sharma V, Hays WR, Wood WM, Pugazhenthi U, Germain DLS, Bianco AC, Krezel W, Chambon P, Haugen BR. Effects of rexinoids on thyrotrope function and the hypothalamic-pituitary-thyroid axis. Endocrinology. 2006;147:1438–51.PubMedCrossRefGoogle Scholar
  94. Shibusawa N, Hollenberg AN, Wondisford FE. Thyroid hormone receptor DNA binding is required for both positive and negative gene regulation. J Biol Chem. 2003;278:732–8.PubMedCrossRefGoogle Scholar
  95. Silveira JC, Kopp PA. Pendrin and anoctamin as mediators of apical iodide efflux in thyroid cells. Curr Opin Endocrinol Diabetes Obes. 2015;22:374–80.PubMedCrossRefGoogle Scholar
  96. Sirakov M, Plateroti M. The thyroid hormones and their nuclear receptors in the gut: from developmental biology to cancer. Biochim Biophys Acta. 2011;1812:938–46.PubMedCrossRefGoogle Scholar
  97. Slijepcevic D, Roscam Abbing RLP, Katafuchi T, Blank A, Donkers JM, van Hoppe S, de Waart DR, Tolenaars D, van der Meer JHM, Wildenberg M, Beuers U, Oude Elferink RPJ, Schinkel AH, van de Graaf SFJ. Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice. Hepatology. 2017;66:1631–43.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Stieger B, Hagenbuch B. Organic anion-transporting polypeptides. Curr Top Membr. 2014;73:205–32.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sun Y, Lu X, Gershengorn MC. Thyrotropin-releasing hormone receptors – similarities and differences. J Mol Endocrinol. 2003;30:87–97.PubMedCrossRefGoogle Scholar
  100. Targovnik HM, Citterio CE, Rivolta CM. Iodide handling disorders (NIS, TPO, TG, IYD). Best Pract Res Clin Endocrinol Metab. 2017;31:195–212.PubMedCrossRefGoogle Scholar
  101. Taurog A. Hormone synthesis: thyroid iodine metabolism. In: Braverman LE, Utiger RD, editors. Werner & Ingbar’s the thyroid. Philadephia: Lippincott Williams & Wilkins; 2000.Google Scholar
  102. Taurog A, Dorris ML, Doerge DR. Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase. Arch Biochem Biophys. 1996;330:24–32.PubMedCrossRefGoogle Scholar
  103. Taylor PM, Ritchie JW. Tissue uptake of thyroid hormone by amino acid transporters. Best Pract Res Clin Endocrinol Metab. 2007;21:237–51.PubMedCrossRefGoogle Scholar
  104. Vaitkus JA, Farrar JS, Celi FS. Thyroid hormone mediated modulation of energy expenditure. Int J Mol Sci. 2015;16:16158–75.PubMedPubMedCentralCrossRefGoogle Scholar
  105. van der Deure WM, Peeters RP, Visser TJ. Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters. J Mol Endocrinol. 2010;44:1–11.PubMedCrossRefGoogle Scholar
  106. van der Spek AH, Fliers E, Boelen A. The classic pathways of thyroid hormone metabolism. Mol Cell Endocrinol. 2017.Google Scholar
  107. van Gucht ALM, Moran C, Meima ME, Visser WE, Chatterjee K, Visser TJ, Peeters RP. Resistance to thyroid hormone due to heterozygous mutations in thyroid hormone receptor alpha. Curr Top Dev Biol. 2017;125:337–55.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Visser TJ. Biosynthesis, transport, metabolism, and actions of thyroid hormone. In: Wass JAH, Stewart PM, editors. Oxford textbook of endocrinology and diabetes. Oxford: Oxford University Press; 2011.Google Scholar
  109. Visser TJ, Kaptein E, Gijzel AL, de Herder WW, Ebner T, Burchell B. Glucuronidation of thyroid hormone by human bilirubin and phenol UDP-glucuronyltransferase isoenzymes. FEBS Lett. 1993;324:358–60.PubMedCrossRefGoogle Scholar
  110. Visser WE, Friesema EC, Jansen J, Visser TJ. Thyroid hormone transport by monocarboxylate transporters. Best Pract Res Clin Endocrinol Metab. 2007;21:223–36.PubMedCrossRefGoogle Scholar
  111. Visser WE, Friesema EC, Jansen J, Visser TJ. Thyroid hormone transport in and out of cells. Trends Endocrinol Metab. 2008;19:50–6.PubMedCrossRefGoogle Scholar
  112. Visser WE, Friesema EC, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol. 2011;25:1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wajner SM, Goemann IM, Bueno AL, Larsen PR, Maia AL. IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. J Clin Invest. 2011;121:1834–45.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wemeau JL, Kopp P. Pendred syndrome. Best Pract Res Clin Endocrinol Metab. 2017;31:213–24.PubMedCrossRefGoogle Scholar
  115. Werneck de Castro JP, Fonseca TL, Ueta CB, McAninch EA, Abdalla S, Wittmann G, Lechan RM, Gereben B, Bianco AC. Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine. J Clin Invest. 2015;125:769–81.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wilkinson JH. Recent work on thyroid hormones. Postgrad Med J. 1957;33:333–7.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wood WJ, Geraci T, Nilsen A, DeBarber AE, Scanlan TS. Iodothyronamines are oxidatively deaminated to iodothyroacetic acids in vivo. Chembiochem. 2009;10:361–5.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wu SY, Green WL, Huang WS, Hays MT, Chopra IJ. Alternate pathways of thyroid hormone metabolism. Thyroid. 2005;15:943–58.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001;81:1097–142.PubMedCrossRefGoogle Scholar
  120. Zevenbergen C, Meima ME, Lima de Souza EC, Peeters RP, Kinne A, Krause G, Visser WE, Visser TJ. Transport of iodothyronines by human L-type amino acid transporters. Endocrinology. 2015;156:4345–55.PubMedCrossRefGoogle Scholar
  121. Zhang CY, Kim S, Harney JW, Larsen PR. Further characterization of thyroid hormone response elements in the human type 1 iodothyronine deiodinase gene. Endocrinology. 1998;139:1156–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands

Personalised recommendations