Hematopoiesis and Aging

  • Nancy K. Gillis
  • Lynn C. Moscinski
  • Eric PadronEmail author
Living reference work entry


It is apparent that hematopoiesis, the formation and differentiation of the cellular components of blood, and bone marrow function are altered with aging, but the physiologic basis has yet to be fully elucidated. Specifically, the aging process is typically characterized by a reduction in functional reserve capacity. Thus, while basal function is normal, the ability to respond to increasing demand and infectious or inflammatory stress is compromised. In this chapter we provide a brief overview of normal, healthy bone marrow regulation and function and discuss changes observed with aging. These changes affect both intrinsic (e.g., pluripotent stem cells and committed hematopoietic precursors) and extrinsic (e.g., stroma and cytokines) factors of bone marrow function. The idiopathic acquisition of somatic mutations that occurs in elderly individuals, termed clonal hematopoiesis of indeterminate potential, is also discussed. We conclude with a discussion of the functional changes in immune function, mediated by bone marrow B and T cells, that are observed in aging individuals.


Hematopoiesis Bone marrow Aging Clonal hematopoiesis Stem cells Cytokines CFU-S CHIP 


  1. Abkowitz JL, Taboada M, Shelton GH, Catlin SN, Guttorp P, Kiklevich JV. An X chromosome gene regulates hematopoietic stem cell kinetics. Proc Natl Acad Sci U S A. 1998;95(7):3862–6.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abraham CR, Shirahama T, Potter H. Alpha 1-antichymotrypsin is associated solely with amyloid deposits containing the beta-protein. Amyloid and cell localization of alpha 1-antichymotrypsin. Neurobiol Aging. 1990;11(2):123–9.PubMedCrossRefGoogle Scholar
  3. Abramson S, Miller RG, Phillips RA. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med. 1977;145(6):1567–79.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allen TD. Haemopoietic microenvironments in vitro: ultrastructural aspects. Ciba Found Symp. 1981;84: 38–67.PubMedGoogle Scholar
  5. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A. 1992;89(21):10114–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anderson DM, Lyman SD, Baird A, Wignall JM, Eisenman J, Rauch C, et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell. 1990;63(1):235–43.PubMedCrossRefGoogle Scholar
  7. Bagnara GP, Bonsi L, Strippoli P, Bonifazi F, Tonelli R, D’Addato S, et al. Hemopoiesis in healthy old people and centenarians: well-maintained responsiveness of CD34+ cells to hemopoietic growth factors and remodeling of cytokine network. J Gerontol A Biol Sci Med Sci. 2000;55(2):B61–6; discussion B7–70PubMedCrossRefGoogle Scholar
  8. Baraldi-Junkins CA, Beck AC, Rothstein G. Hematopoiesis and cytokines. Relevance to cancer and aging. Hematol Oncol Clin North Am. 2000;14(1):45–61, viiiPubMedCrossRefGoogle Scholar
  9. Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, Martin F, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell. 1994;77(7): 1117–24.PubMedCrossRefGoogle Scholar
  10. Bauer J, Konig G, Strauss S, Jonas U, Ganter U, Weidemann A, et al. In-vitro matured human macrophages express Alzheimer’s beta A4-amyloid precursor protein indicating synthesis in microglial cells. FEBS Lett. 1991;282(2):335–40.PubMedCrossRefGoogle Scholar
  11. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A. 1992;89(7):2804–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452–4.PubMedCrossRefGoogle Scholar
  13. Begg CB, Carbone PP. Clinical trials and drug toxicity in the elderly. The experience of the Eastern Cooperative Oncology Group. Cancer. 1983;52(11):1986–92.PubMedCrossRefGoogle Scholar
  14. Ben-Yehuda A, Szabo P, Dyall R, Weksler ME. Bone marrow declines as a site of B-cell precursor differentiation with age: relationship to thymus involution. Proc Natl Acad Sci U S A. 1994a;91(25):11988–92.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ben-Yehuda A, Szabo P, Weksler ME. Age-associated changes in the B-cell repertoire: effect of age on RAG-1 gene expression in murine bone marrow. Immunol Lett. 1994b;40(3):287–9.PubMedCrossRefGoogle Scholar
  16. Boggs DR, Patrene KD. Hematopoiesis and aging III: Anemia and a blunted erythropoietic response to hemorrhage in aged mice. Am J Hematol. 1985;19(4): 327–38.PubMedCrossRefGoogle Scholar
  17. Boggs SS, Patrene KD, Austin CA, Vecchini F, Tollerud DJ. Latent deficiency of the hematopoietic microenvironment of aged mice as revealed in W/Wv mice given +/+ cells. Exp Hematol. 1991;19(7):683–7.PubMedGoogle Scholar
  18. Bonnet D. Normal and leukemic CD34-negative human hematopoietic stem cells. Rev Clin Exp Hematol. 2001;5(1):42–61.PubMedCrossRefGoogle Scholar
  19. Brandt J, Srour EF, van Besien K, Briddell RA, Hoffman R. Cytokine-dependent long-term culture of highly enriched precursors of hematopoietic progenitor cells from human bone marrow. J Clin Invest. 1990a;86(3):932–41.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brandt SJ, Bodine DM, Dunbar CE, Nienhuis AW. Dysregulated interleukin 6 expression produces a syndrome resembling Castleman’s disease in mice. J Clin Invest. 1990b;86(2):592–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Buchanan JP, Rothstein G. Deficient growth factor production as a cause of hematopoietic dysregulation in aged subjects. Clin Res. 1989;37(1):149–50.Google Scholar
  22. Buscarlet M, Provost S, Zada YF, Barhdadi A, Bourgoin V, Lepine G, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood. 2017;130(6): 753–62.PubMedCrossRefGoogle Scholar
  23. Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44(11):1179–81.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cappellini MD, Potter CG, Wood WG. Long-term haemopoiesis in human fetal liver cell cultures. Br J Haematol. 1984;57(1):61–70.PubMedCrossRefGoogle Scholar
  25. Chatta GS, Andrews RG, Rodger E, Schrag M, Hammond WP, Dale DC. Hematopoietic progenitors and aging: alterations in granulocytic precursors and responsiveness to recombinant human G-CSF, GM-CSF, and IL-3. J Gerontol. 1993;48(5):M207–12.PubMedCrossRefGoogle Scholar
  26. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol. 1984;133(1):157–65.PubMedGoogle Scholar
  27. Coggle JE, Proukakis C. The effect of age on the bone marrow cellularity of the mouse. Gerontologia. 1970;16(1):24–9.PubMedGoogle Scholar
  28. Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A, Jonsson P, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell. 2017;21:374.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Daynes RA, Araneo BA, Ershler WB, Maloney C, Li GZ, Ryu SY. Altered regulation of IL-6 production with normal aging. Possible linkage to the age-associated decline in dehydroepiandrosterone and its sulfated derivative. J Immunol. 1993;150(12):5219–30.PubMedGoogle Scholar
  30. de Boer P, van der Hoeven FA. The use of translocation-derived “marker-bivalents” for studying the origin of meiotic instability in female mice. Cytogenet Cell Genet. 1980;26(1):49–58.PubMedCrossRefGoogle Scholar
  31. Egusa Y, Fujiwara Y, Syahruddin E, Isobe T, Yamakido M. Effect of age on human peripheral blood stem cells. Oncol Rep. 1998;5(2):397–400.PubMedGoogle Scholar
  32. El Kassar N, Hetet G, Briere J, Grandchamp B. X-chromosome inactivation in healthy females: incidence of excessive lyonization with age and comparison of assays involving DNA methylation and transcript polymorphisms. Clin Chem. 1998;44(1): 61–7.PubMedGoogle Scholar
  33. Ershler WB. Interleukin-6: a cytokine for gerontologists. J Am Geriatr Soc. 1993;41(2):176–81.PubMedCrossRefGoogle Scholar
  34. Everitt AV, Webb C. The blood picture of the aging male rat. J Gerontol. 1958;13(3):255–60.PubMedCrossRefGoogle Scholar
  35. Finkelstein MS, Petkun WM, Freedman ML, Antopol SC. Pneumococcal bacteremia in adults: age-dependent differences in presentation and in outcome. J Am Geriatr Soc. 1983;31(1):19–27.PubMedCrossRefGoogle Scholar
  36. Fong TC, Makinodan T. In situ hybridization analysis of the age-associated decline in IL-2 mRNA expressing murine T cells. Cell Immunol. 1989;118(1):199–207.PubMedCrossRefGoogle Scholar
  37. Foster KD, Conn CA, Kluger MJ. Fever, tumor necrosis factor, and interleukin-6 in young, mature, and aged Fischer 344 rats. Am J Phys. 1992;262(2 Pt 2):R211–5.Google Scholar
  38. Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, et al. Clonal hematopoiesis associated with Tet2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355:842.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ganter U, Arcone R, Toniatti C, Morrone G, Ciliberto G. Dual control of C-reactive protein gene expression by interleukin-1 and interleukin-6. EMBO J. 1989;8(12): 3773–9.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Garman RD, Jacobs KA, Clark SC, Raulet DH. B-cell-stimulatory factor 2 (beta 2 interferon) functions as a second signal for interleukin 2 production by mature murine T cells. Proc Natl Acad Sci U S A. 1987;84(21):7629–33.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ghia P, Melchers F, Rolink AG. Age-dependent changes in B lymphocyte development in man and mouse. Exp Gerontol. 2000;35(2):159–65.PubMedCrossRefGoogle Scholar
  43. Gibson CJ, Lindsley RC, Tchekmedyian V, Mar BG, Shi J, Jaiswal S, et al. Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J Clin Oncol. 2017a;35:1598. Scholar
  44. Gibson CJ, Kennedy JA, Nikiforow S, Kuo FC, Alyea EP, Ho V, et al. Donor-engrafted CHIP is common among stem cell transplant recipients with unexplained cytopenias. Blood. 2017b;130(1):91–4.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gillis S, Kozak R, Durante M, Weksler ME. Immunological studies of aging. Decreased production of and response to T cell growth factor by lymphocytes from aged humans. J Clin Invest. 1981;67(4):937–42.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gillis NK, Ball M, Zhang Q, Ma Z, Zhao Y, Yoder SJ, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol. 2016.Google Scholar
  47. Girasole G, Jilka RL, Passeri G, Boswell S, Boder G, Williams DC, et al. 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest. 1992;89(3):883–91.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Globerson A. Thymocyte progenitors in ageing. Immunol Lett. 1994;40(3):219–24.PubMedCrossRefGoogle Scholar
  49. Globerson A. Hematopoietic stem cells and aging. Exp Gerontol. 1999;34(2):137–46.PubMedCrossRefGoogle Scholar
  50. Globerson A, Sharp A, Fridkis-Hareli M, Kukulansky T, Abel L, Knyszynski A, et al. Aging in the T lymphocyte compartment. A developmental view. Ann N Y Acad Sci. 1992;673:240–51.PubMedCrossRefGoogle Scholar
  51. Goldstein S. Replicative senescence: the human fibroblast comes of age. Science. 1990;249(4973):1129–33.PubMedCrossRefGoogle Scholar
  52. Harrison DE. Normal production of erythrocytes by mouse marrow continuous for 73 months. Proc Natl Acad Sci U S A. 1973;70(11):3184–8.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Harrison DE. Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood. 1980;55(1):77–81.PubMedGoogle Scholar
  54. Harrison DE, Astle CM, Delaittre JA. Loss of proliferative capacity in immunohemopoietic stem cells caused by serial transplantation rather than aging. J Exp Med. 1978;147(5):1526–31.PubMedCrossRefGoogle Scholar
  55. Harrison DE, Astle CM, Lerner C. Number and continuous proliferative pattern of transplanted primitive immunohematopoietic stem cells. Proc Natl Acad Sci U S A. 1988;85(3):822–6.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Harrison DE, Jordan CT, Zhong RK, Astle CM. Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp Hematol. 1993;21(2):206–19.PubMedGoogle Scholar
  57. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346(6287):866–8.PubMedCrossRefGoogle Scholar
  58. Hayflick L. The cell biology of human aging. N Engl J Med. 1976;295(23):1302–8.PubMedCrossRefGoogle Scholar
  59. Heimfeld S, Hudak S, Weissman I, Rennick D. The in vitro response of phenotypically defined mouse stem cells and myeloerythroid progenitors to single or multiple growth factors. Proc Natl Acad Sci U S A. 1991;88(21):9902–6.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hirota Y, Okamura S, Kimura N, Shibuya T, Niho Y. Haematopoiesis in the aged as studied by in vitro colony assay. Eur J Haematol. 1988;40(1):83–90.PubMedCrossRefGoogle Scholar
  61. Holbrook NJ, Chopra RK, McCoy MT, Nagel JE, Powers DC, Adler WH, et al. Expression of interleukin 2 and the interleukin 2 receptor in aging rats. Cell Immunol. 1989;120(1):1–9.PubMedCrossRefGoogle Scholar
  62. Hozumi K, Masuko T, Nishimura T, Habu S, Hashimoto Y. Characterization of the T cells in aged rat bone marrow. Immunol Lett. 1993;36(2):137–43.PubMedCrossRefGoogle Scholar
  63. Huang S, Terstappen LW. Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38− hematopoietic stem cells. Blood. 1994;83(6):1515–26.PubMedPubMedCentralGoogle Scholar
  64. Huang E, Nocka K, Beier DR, Chu TY, Buck J, Lahm HW, et al. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell. 1990;63(1):225–33.PubMedCrossRefGoogle Scholar
  65. Iscove NN, Till JE, McCulloch EA. The proliferative states of mouse granulopoietic progenitor cells. Proc Soc Exp Biol Med. 1970;134(1):33–6.PubMedCrossRefGoogle Scholar
  66. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990;145(10):3297–303.PubMedGoogle Scholar
  67. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111–21.PubMedCrossRefGoogle Scholar
  69. Jonsson JI, Phillips RA. Interleukin-7 responsiveness of B220+ B cell precursors from bone marrow decreases in aging mice. Cell Immunol. 1993;147(2):267–78.PubMedCrossRefGoogle Scholar
  70. Jordan CT, Astle CM, Zawadzki J, Mackarehtschian K, Lemischka IR, Harrison DE. Long-term repopulating abilities of enriched fetal liver stem cells measured by competitive repopulation. Exp Hematol. 1995;23(9): 1011–5.PubMedGoogle Scholar
  71. Jourdan M, Bataille R, Seguin J, Zhang XG, Chaptal PA, Klein B. Constitutive production of interleukin-6 and immunologic features in cardiac myxomas. Arthritis Rheum. 1990;33(3):398–402.PubMedCrossRefGoogle Scholar
  72. Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature. 1994;369(6481):568–71.PubMedCrossRefGoogle Scholar
  73. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature. 1988;332(6159):83–5.PubMedCrossRefGoogle Scholar
  74. Kincade PW. Experimental models for understanding B lymphocyte formation. Adv Immunol. 1987;41: 181–267.PubMedCrossRefGoogle Scholar
  75. Klein AK, Dyck JA, Stitzel KA, Shimizu J, Fox LA, Taylor N. Characterization of canine fetal lymphohematopoiesis: studies of CFUGM, CFUL, and CFUF. Exp Hematol. 1983;11(4):263–74.PubMedGoogle Scholar
  76. Klein B, Zhang XG, Jourdan M, Content J, Houssiau F, Aarden L, et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood. 1989;73(2):517–26.PubMedGoogle Scholar
  77. Lansdorp PM, Sutherland HJ, Eaves CJ. Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J Exp Med. 1990;172(1):363–6.PubMedCrossRefGoogle Scholar
  78. Laver J, Ebell W, Castro-Malaspina H. Radiobiological properties of the human hematopoietic microenvironment: contrasting sensitivities of proliferative capacity and hematopoietic function to in vitro irradiation. Blood. 1986;67(4):1090–7.PubMedGoogle Scholar
  79. Lee MA, Segal GM, Bagby GC. The hematopoietic microenvironment in the elderly: defects in IL-1-induced CSF expression in vitro. Exp Hematol. 1989;17(9): 952–6.PubMedGoogle Scholar
  80. Li DD, Chien YK, Gu MZ, Richardson A, Cheung HT. The age-related decline in interleukin-3 expression in mice. Life Sci. 1988;43(15):1215–22.PubMedCrossRefGoogle Scholar
  81. Lipschitz DA, Udupa KB. Age and the hematopoietic system. J Am Geriatr Soc. 1986;34(6):448–54.PubMedCrossRefGoogle Scholar
  82. Lipschitz DA, Udupa KB, Milton KY, Thompson CO. Effect of age on hematopoiesis in man. Blood. 1984;63(3):502–9.PubMedGoogle Scholar
  83. Lord BI, Schofield R. Haemopoietic spleen colony forming units. In: Potten CS, Hendry JH, editors. Cell clones: manual of mammalian cell techniques. Edinburgh: Churchill Livingstone; 1985. p. 13.Google Scholar
  84. Lu L, Walker D, Broxmeyer HE, Hoffman R, Hu W, Walker E. Characterization of adult human marrow hematopoietic progenitors highly enriched by two-color cell sorting with My10 and major histocompatibility class II monoclonal antibodies. J Immunol. 1987;139(6):1823–9.PubMedGoogle Scholar
  85. Lundblad V, Szostak JW. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell. 1989;57(4):633–43.PubMedCrossRefGoogle Scholar
  86. Maurer AM, Liu Y, Caen JP, Han ZC. Ex vivo expansion of megakaryocytic cells. Int J Hematol. 2000;71(3): 203–10.PubMedGoogle Scholar
  87. McCormick KR, Haar JL. Bone marrow-thymus axis in senescence. Am J Anat. 1991;191(3):321–4.PubMedCrossRefGoogle Scholar
  88. Merz H, Fliedner A, Orscheschek K, Binder T, Sebald W, Muller-Hermelink HK, et al. Cytokine expression in T-cell lymphomas and Hodgkin's disease. Its possible implication in autocrine or paracrine production as a potential basis for neoplastic growth. Am J Pathol. 1991;139(5):1173–80.PubMedPubMedCentralGoogle Scholar
  89. Micklem HS, Lennon JE, Ansell JD, Gray RA. Numbers and dispersion of repopulating hematopoietic cell clones in radiation chimeras as functions of injected cell dose. Exp Hematol. 1987;15(3):251–7.PubMedGoogle Scholar
  90. Montecino-Rodriguez E, Clark R, Dorshkind K. Effects of insulin-like growth factor administration and bone marrow transplantation on thymopoiesis in aged mice. Endocrinology. 1998;139(10):4120–6.PubMedCrossRefGoogle Scholar
  91. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL. The aging of hematopoietic stem cells. Nat Med. 1996;2(9):1011–6.PubMedCrossRefGoogle Scholar
  92. Nachbaur DM, Herold M, Maneschg A, Huber H. Serum levels of interleukin-6 in multiple myeloma and other hematological disorders: correlation with disease activity and other prognostic parameters. Ann Hematol. 1991;62(2–3):54–8.PubMedCrossRefGoogle Scholar
  93. Nagel JE, Chopra RK, Chrest FJ, McCoy MT, Schneider EL, Holbrook NJ, et al. Decreased proliferation, interleukin 2 synthesis, and interleukin 2 receptor expression are accompanied by decreased mRNA expression in phytohemagglutinin-stimulated cells from elderly donors. J Clin Invest. 1988;81(4): 1096–102.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Namen AE, Lupton S, Hjerrild K, Wignall J, Mochizuki DY, Schmierer A, et al. Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature. 1988;333(6173):571–3.PubMedCrossRefGoogle Scholar
  95. Norwood TH, Smith JR, Stein GH. Aging at the cellular level: the human fibroblastlike cell model. In: Schneider EL, Rowe JW, editors. Handbook of the biology of aging. 3rd ed. San Diego: Elsevier; 1990. p. 131–54.Google Scholar
  96. Ogawa M, Matsunaga T. Humoral regulation of hematopoietic stem cells. Ann N Y Acad Sci. 1999;872:17–23; discussion−4PubMedCrossRefGoogle Scholar
  97. Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41(1):181–90.PubMedCrossRefGoogle Scholar
  98. Pawelec G, Effros RB, Caruso C, Remarque E, Barnett Y, Solana R. T cells and aging (update february 1999). Front Biosci. 1999;4:D216–69.PubMedGoogle Scholar
  99. Ploemacher RE, Molendijk WJ, Brons NH, de Ruiter H. Defective support of S1/S1d splenic stroma for humoral regulation of stem cell proliferation. Exp Hematol. 1986;14(1):9–15.PubMedGoogle Scholar
  100. Price GB, Makinodan T. Immunologic deficiencies in senescence. I. Characterization of intrinsic deficiencies. J Immunol. 1972;108(2):403–12.PubMedGoogle Scholar
  101. Radl J. Age-related monoclonal gammapathies: clinical lessons from the aging C57BL mouse. Immunol Today. 1990;11(7):234–6.PubMedCrossRefGoogle Scholar
  102. Radl J, Sepers JM, Skvaril F, Morell A, Hijmans W. Immunoglobulin patterns in humans over 95 years of age. Clin Exp Immunol. 1975;22(1):84–90.PubMedPubMedCentralGoogle Scholar
  103. Robertson JD, Gale RE, Wynn RF, Dougal M, Linch DC, Testa NG, et al. Dynamics of telomere shortening in neutrophils and T lymphocytes during ageing and the relationship to skewed X chromosome inactivation patterns. Br J Haematol. 2000;109(2):272–9.PubMedCrossRefGoogle Scholar
  104. Roodman GD. Interleukin-6: an osteotropic factor? J Bone Miner Res. 1992;7(5):475–8.PubMedCrossRefGoogle Scholar
  105. Ross EA, Anderson N, Micklem HS. Serial depletion and regeneration of the murine hematopoietic system. Implications for hematopoietic organization and the study of cellular aging. J Exp Med. 1982;155(2): 432–44.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Schofield R, Lajtha LG. Effect of isopropyl methane sulphonate (IMS) on haemopoietic colony-forming cells. Br J Haematol. 1973;25(2):195–202.PubMedCrossRefGoogle Scholar
  107. Schofield R, Lord BI, Kyffin S, Gilbert CW. Self-maintenance capacity of CFU-S. J Cell Physiol. 1980;103(2):355–62.PubMedCrossRefGoogle Scholar
  108. Schofield R, Dexter TM, Lord BI, Testa NG. Comparison of haemopoiesis in young and old mice. Mech Ageing Dev. 1986;34(1):1–12.PubMedCrossRefGoogle Scholar
  109. Schulze DH, Goidl EA. Age-associated changes in antibody-forming cells (B cells). Proc Soc Exp Biol Med. 1991;196(3):253–9.PubMedCrossRefGoogle Scholar
  110. Sen S, Talukder G, Sharma A. Chromosomal alterations and DNA content in rats during ageing. Genome. 1989;32(3):389–92.PubMedCrossRefGoogle Scholar
  111. Sharp A, Zipori D, Toledo J, Tal S, Resnitzky P, Globerson A. Age related changes in hemopoietic capacity of bone marrow cells. Mech Ageing Dev. 1989;48(1):91–9.PubMedCrossRefGoogle Scholar
  112. Sharp A, Kukulansky T, Malkinson Y, Globerson A. The bone marrow as an effector T cell organ in aging. Mech Ageing Dev. 1990;52(2–3):219–33.PubMedCrossRefGoogle Scholar
  113. Sidorenko AV. Stromal precursor cells of hemopoietic and lymphoid organs in aged mice. Arch Biol (Bruxelles). 1985;96:237–51.Google Scholar
  114. Sidorenko AV, Gubrii IB, Andrianova LF, Macsijuk TV, Butenko GM. Functional rearrangement of lymphohemopoietic system in heterochronically parabiosed mice. Mech Ageing Dev. 1986;36(1):41–56.PubMedCrossRefGoogle Scholar
  115. Sidorenko AV, Andrianova LF, Macsyuk TV, Butenko GM. Stromal hemopoietic microenvironment in aging. Mech Ageing Dev. 1990;54(2):131–42.PubMedCrossRefGoogle Scholar
  116. Simmons PJ, Torok-Storb B. CD34 expression by stromal precursors in normal human adult bone marrow. Blood. 1991;78(11):2848–53.PubMedGoogle Scholar
  117. Singh SM, Toles JF, Reaume J. Genotype- and age-associated in vivo cytogenetic alterations following mutagenic exposures in mice. Can J Genet Cytol. 1986;28(2):286–93.PubMedCrossRefGoogle Scholar
  118. Sletvold O, Laerum OD. Multipotent stem cell (CFU-S) numbers and circadian variations in aging mice. Eur J Haematol. 1988;41(3):230–6.PubMedCrossRefGoogle Scholar
  119. Sletvold O, Laerum OD, Riise T. Rhythmic variations of different hemopoietic cell lines and maturation stages in aging mice. Mech Ageing Dev. 1988;42(1):91–104.PubMedCrossRefGoogle Scholar
  120. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Stephan RP, Reilly CR, Witte PL. Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood. 1998;91(1):75–88.PubMedGoogle Scholar
  122. Sudo K, Ema H, Morita Y, Nakauchi H. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 2000;192(9):1273–80.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sun WH, Binkley N, Bidwell DW, Ershler WB. The influence of recombinant human interleukin-6 on blood and immune parameters in middle-aged and old rhesus monkeys. Lymphokine Cytokine Res. 1993;12(6): 449–55.PubMedGoogle Scholar
  124. Takahashi K, Wang F, Kantarjian H, Doss D, Khanna K, Thompson E, et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 2017;18(1):100–11.PubMedCrossRefGoogle Scholar
  125. Tanaka H, Liang CT. Effect of platelet-derived growth factor on DNA synthesis and gene expression in bone marrow stromal cells derived from adult and old rats. J Cell Physiol. 1995;164(2):367–75.PubMedCrossRefGoogle Scholar
  126. Tanaka H, Quarto R, Williams S, Barnes J, Liang CT. In vivo and in vitro effects of insulin-like growth factor-I (IGF-I) on femoral mRNA expression in old rats. Bone. 1994;15(6):647–53.PubMedCrossRefGoogle Scholar
  127. Tang B, Matsuda T, Akira S, Nagata N, Ikehara S, Hirano T, et al. Age-associated increase in interleukin 6 in MRL/lpr mice. Int Immunol. 1991;3(3):273–8.PubMedCrossRefGoogle Scholar
  128. Tavassoli M, Friedenstein A. Hemopoietic stromal microenvironment. Am J Hematol. 1983;15(2):195–203.PubMedCrossRefGoogle Scholar
  129. Tejero C, Testa NG, Lord BI. The cellular specificity of haemopoietic stem cell proliferation regulators. Br J Cancer. 1984;50(3):335–41.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Tejero C, Testa NG, Hendry JH. Decline in cycling of granulocyte-macrophage colony-forming cells with increasing age in mice. Exp Hematol. 1989;17(1):66–7.PubMedGoogle Scholar
  131. Terstappen LW, Lund-Johansen F. Commentary: hematopoietic progenitors in fetal and adult tissue. Blood Cells. 1994;20(2–3):392–6.PubMedGoogle Scholar
  132. Terstappen LW, Huang S, Safford M, Lansdorp PM, Loken MR. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38− progenitor cells. Blood. 1991;77(6): 1218–27.PubMedGoogle Scholar
  133. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213–22.PubMedCrossRefGoogle Scholar
  134. Udupa KB, Lipschitz DA. Erythropoiesis in the aged mouse: I. Response to stimulation in vivo. J Lab Clin Med. 1984;103(4):574–80.PubMedGoogle Scholar
  135. Udupa KB, Lipschitz DA. Effect of donor and culture age on the function of neutrophils harvested from long-term bone marrow culture. Exp Hematol. 1987;15(3):212–6.PubMedGoogle Scholar
  136. Updyke LW, Cocke KS, Wierda D. Age-related changes in production of interleukin-7 (IL-7) by murine long-term bone marrow cultures (LTBMC). Mech Ageing Dev. 1993;69(1–2):109–17.PubMedCrossRefGoogle Scholar
  137. Van den Heuvel RL, Versele SR, Schoeters GE, Vanderborght OL. Stromal stem cells (CFU-f) in yolk sac, liver, spleen and bone marrow of pre- and postnatal mice. Br J Haematol. 1987;66(1):15–20.PubMedCrossRefGoogle Scholar
  138. Van Den Heuvel RL, Schoeters GE, Vanderborght OL. Haemopoiesis in long-term cultures of liver, spleen and bone marrow of pre- and postnatal mice: CFU-GM production. Br J Haematol. 1988;70(3):273–7.CrossRefGoogle Scholar
  139. Van Den Heuvel R, Schoeters G, Leppens H, Vanderborght O. Stromal cells in long-term cultures of liver, spleen, and bone marrow at different developmental ages have different capacities to maintain GM-CFC proliferation. Exp Hematol. 1991;19(2):115–21.Google Scholar
  140. Vandenabeele P, Fiers W. Is amyloidogenesis during Alzheimer’s disease due to an IL-1-/IL-6-mediated ‘acute phase response’ in the brain? Immunol Today. 1991;12(7):217–9.PubMedCrossRefGoogle Scholar
  141. Vaziri H, Schachter F, Uchida I, Wei L, Zhu X, Effros R, et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet. 1993;52(4):661–7.PubMedPubMedCentralGoogle Scholar
  142. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A. 1994;91(21):9857–60.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Verfaillie C, Blakolmer K, McGlave P. Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma. J Exp Med. 1990;172(2):509–2.PubMedCrossRefGoogle Scholar
  144. Viale AC, Chies JA, Huetz F, Malenchere E, Weksler M, Freitas AA, et al. VH-gene family dominance in ageing mice. Scand J Immunol. 1994;39(2):184–8.PubMedCrossRefGoogle Scholar
  145. Visser JW, Van Bekkum DW. Purification of pluripotent hemopoietic stem cells: past and present. Exp Hematol. 1990;18(3):248–56.PubMedGoogle Scholar
  146. Wang QR, Wolf NS. Dissecting the hematopoietic microenvironment. VIII. Clonal isolation and identification of cell types in murine CFU-F colonies by limiting dilution. Exp Hematol. 1990;18(4):355–9.PubMedGoogle Scholar
  147. Watson JD. Origin of concatemeric T7 DNA. Nat New Biol. 1972;239(94):197–201.PubMedCrossRefGoogle Scholar
  148. Weinstein MP, Murphy JR, Reller LB, Lichtenstein KA. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. II. Clinical observations, with special reference to factors influencing prognosis. Rev Infect Dis. 1983;5(1):54–70.PubMedCrossRefGoogle Scholar
  149. Westen H, Bainton DF. Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. J Exp Med. 1979;150(4): 919–37.PubMedCrossRefGoogle Scholar
  150. Williams LH, Udupa KB, Lipshitz DA. Evaluation of the effect of age on hematopoiesis in the C57BL/6 mouse. Exp Hematol. 1986;14(9):827–32.PubMedGoogle Scholar
  151. Williams DE, Eisenman J, Baird A, Rauch C, Van Ness K, March CJ, et al. Identification of a ligand for the c-kit proto-oncogene. Cell. 1990;63(1):167–74.PubMedCrossRefGoogle Scholar
  152. Wolf NS. Dissecting the hematopoietic microenvironment. III. Evidence for a positive short range stimulus for cellular proliferation. Cell Tissue Kinet. 1978;11(4): 335–45.PubMedGoogle Scholar
  153. Wolf NS, Bertoncello I, Jiang D, Priestley G. Developmental hematopoiesis from prenatal to young-adult life in the mouse model. Exp Hematol. 1995;23(2):142–6.PubMedGoogle Scholar
  154. Wu AM, Till JE, Siminovitch L, McCulloch EA. Cytological evidence for a relationship between normal hemotopoietic colony-forming cells and cells of the lymphoid system. J Exp Med. 1968;127(3):455–64.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472–8.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Xu CX, Hendry JH, Testa NG, Allen TD. Stromal colonies from mouse marrow: characterization of cell types, optimization of plating efficiency and its effect on radiosensitivity. J Cell Sci. 1983;61:453–66.PubMedGoogle Scholar
  157. Yoshizaki K, Matsuda T, Nishimoto N, Kuritani T, Taeho L, Aozasa K, et al. Pathogenic significance of interleukin-6 (IL-6/BSF-2) in Castleman’s disease. Blood. 1989;74(4):1360–7.PubMedGoogle Scholar
  158. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7:12484.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Zaucha JM, Yu C, Mathioudakis G, Seidel K, Georges G, Sale G, et al. Hematopoietic responses to stress conditions in young dogs compared with elderly dogs. Blood. 2001;98(2):322–7.PubMedCrossRefGoogle Scholar
  160. Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT, Jonsdottir I, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130(6):742–52.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zsebo KM, Wypych J, McNiece IK, Lu HS, Smith KA, Karkare SB, et al. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver–conditioned medium. Cell. 1990;63(1):195–201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nancy K. Gillis
    • 1
  • Lynn C. Moscinski
    • 2
  • Eric Padron
    • 3
    Email author
  1. 1.Department of Cancer EpidemiologyMoffitt Cancer CenterTampaUSA
  2. 2.Department of HematopathologyMoffitt Cancer CenterTampaUSA
  3. 3.Department of Malignant HematologyMoffitt Cancer CenterTampaUSA

Section editors and affiliations

  • William Dale
    • 1
  1. 1.Department of Supportive Care MedicineCity of Hope Duarte - Comprehensive Cancer CenterDuarteUSA

Personalised recommendations