Advertisement

Coupled Cluster and Quantum Chemistry Schemes for Solids

  • Andreas GrüneisEmail author
Reference work entry
  • 14 Downloads

Abstract

Quantum chemical wavefunction-based theories approximate the true many-electron wavefunction in a compact fashion and bear the potential to predict materials properties with high accuracy. Their computational complexity is significantly higher than that of the current workhorse method in computational materials science, density functional theory in the framework of approximate exchange, and correlation density functionals. However, the increase in available computer power and methodological and algorithmic improvements during the last decade have made quantum chemical studies of increasing system sizes possible. Coupled cluster theories are among the most widely used quantum chemical wavefunction-based methods. They employ an exponential ansatz of the electronic wavefunction that constitutes a good trade-off between accuracy and computational cost for weakly correlated many-electron systems. Here, we discuss methodological aspects and recent developments of coupled cluster and related quantum chemical theories for ab initio-based materials modeling.

Notes

Acknowledgments

The author gratefully acknowledges support and funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No 715594).

References

  1. Arnim MV, Ahlrichs R (1998) Parallelization of density functional and RI-coulomb approximation in turbomole. J Comput Chem 19:1746CrossRefGoogle Scholar
  2. Ayala PY, Scuseria GE (1999) Linear scaling second-order Møller–Plesset theory in the atomic orbital basis for large molecular systems. J Chem Phys 110(8):3660–3671. http://scitation.aip.org/content/aip/journal/jcp/110/8/10.1063/1.478256 ADSCrossRefGoogle Scholar
  3. Balabanov N, Peterson K (2005) Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3D elements Sc–Zn. J Chem Phys 123:064107Google Scholar
  4. Bartlett RJ, Musiał M (2007) Coupled-cluster theory in quantum chemistry. Rev Mod Phys 79: 291–352. https://link.aps.org/doi/10.1103/RevModPhys.79.291 ADSCrossRefGoogle Scholar
  5. Ben MD, Hutter J, Vandevondele J (2013) Electron correlation in the condensed phase from a resolution of identity approach based on the Gaussian and Plane Waves scheme Electron correlation in the condensed phase from a resolution of identity approach based on the Gaussian and Plane Waves scheme. J Chem Theory Comput 9(6):2654–2671.  https://doi.org/10.1021/ct4002202 CrossRefGoogle Scholar
  6. Benedikt U, Böhm KH, Auer AA (2013) Tensor decomposition in post-Hartree–Fock methods. II. CCD implementation. J Chem Phys 139(22):224101. http://scitation.aip.org/content/aip/journal/jcp/139/22/10.1063/1.4833565
  7. Booth GH, Grüneis A, Kresse G, Alavi A (2013) Towards an exact description of electronic wavefunctions in real solids. Nature 493(7432):365–370.  https://doi.org/10.1038/nature11770, http://www.ncbi.nlm.nih.gov/pubmed/23254929
  8. Booth GH, Tsatsoulis T, Chan GKL, Grüneis A (2016) From plane waves to local Gaussians for the simulation of correlated periodic systems. J Chem Phys 145(8):084111. http://scitation.aip.org/content/aip/journal/jcp/145/8/10.1063/1.4961301 ADSCrossRefGoogle Scholar
  9. Burant JC, Scuseria GE, Frisch MJ (1996) A linear scaling method for hartree-fock exchange calculations of large molecules. J Chem Phys 105:8969–8972ADSCrossRefGoogle Scholar
  10. Chiesa S, Ceperley DM, Martin RM, Holzmann M (2006) Finite-size error in many-body simulations with long-range interactions. Phys Rev Lett 97(7):6–9.  https://doi.org/10.1103/PhysRevLett.97.076404 CrossRefGoogle Scholar
  11. Cizek J (1966) On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell–type expansion using quantum–field theoretical methods. J Chem Phys 45(11):4256–4266.  https://doi.org/10.1063/1.1727484 ADSCrossRefGoogle Scholar
  12. Coester F (1958) Bound states of a many-particle system. Nucl Phys 1:421–424CrossRefGoogle Scholar
  13. Coester F, Kümmel H (1960) Short-range correlations in nuclear wave functions. Nucl Phys 17:477–485MathSciNetzbMATHCrossRefGoogle Scholar
  14. Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noel Y, Causa M, Rerat M, Kirtman B (2014) Crystal14: a program for the ab initio investigation of crystalline solids. Int J Quantum Chem 114: 1287–1317CrossRefGoogle Scholar
  15. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023Google Scholar
  16. Friesner RA (1985) Solution of self-consistent field electronic structure equations by a pseudospectral method. Chem Phys Lett 116(1):39–43.  https://doi.org/10.1016/0009-2614(85)80121-4, http://www.sciencedirect.com/science/article/pii/0009261485801214
  17. Füsti-Molnár L, Pulay P (2002) The fourier transform coulomb method: efficient and accurate calculation of the coulomb operator in a gaussian basis. J Chem Phys 117:7827ADSCrossRefGoogle Scholar
  18. Goedecker S (1999) Linear scaling electronic structure methods. Rev Mod Phys 71:1085–1123ADSCrossRefGoogle Scholar
  19. Goedecker S, Scuseria GE (2003) Linear scaling electronic structure methods in chemistry and physics. Comput Sci Eng 5:14–21CrossRefGoogle Scholar
  20. Gruber T, Liao K, Tsatsoulis T, Hummel F, Grüneis A (2018) Applying the coupled-cluster ansatz to solids and surfaces in the thermodynamic limit. Phys Rev X 8:021043. https://link.aps.org/doi/10.1103/PhysRevX.8.021043 Google Scholar
  21. Grüneis A (2015) Efficient explicitly correlated many-electron perturbation theory for solids: application to the schottky defect in MgO. Phys Rev Lett 115:066402. https://link.aps.org/doi/10.1103/PhysRevLett.115.066402 ADSCrossRefGoogle Scholar
  22. Grüneis A, Booth GH, Marsman M, Spencer J, Alavi A, Kresse G (2011) Natural orbitals for wave function based correlated calculations using a plane wave basis set. J Chem Theory Comput 7(9):2780–2785.  https://doi.org/10.1021/ct200263g CrossRefGoogle Scholar
  23. Grüneis A, Shepherd JJ, Alavi A, Tew DP, Booth GH (2013) Explicitly correlated plane waves: accelerating convergence in periodic wavefunction expansions. J Chem Phys 139(8):084112ADSCrossRefGoogle Scholar
  24. Grüneis A, Hirata S, Ohnishi Yy, Ten-no S (2017) Perspective: explicitly correlated electronic structure theory for complex systems. J Chem Phys 146(8):080901.  https://doi.org/10.1063/1.4976974 ADSCrossRefGoogle Scholar
  25. Hättig C, Tew DP, Köhn A (2010) Communications: accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12. J Chem Phys 132(23):231102ADSCrossRefGoogle Scholar
  26. Hättig C, Klopper W, Köhn A, Tew DP (2012) Explicitly correlated electrons in molecules. Chem Rev 112(1):4–74CrossRefGoogle Scholar
  27. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, New YorkCrossRefGoogle Scholar
  28. Hirata S, Podeszwa R, Tobita M, Bartlett RJ (2004) Coupled-cluster singles and doubles for extended systems. J Chem Phys 120(6):2581–2592.  https://doi.org/10.1063/1.1637577 ADSCrossRefGoogle Scholar
  29. Hohenstein EG, Parrish RM, Martínez TJ (2012a) Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller–Plesset perturbation theory. J Chem Phys 137(4):044103. http://scitation.aip.org/content/aip/journal/jcp/137/4/10.1063/1.4732310
  30. Hohenstein EG, Parrish RM, Sherrill CD, Martínez TJ (2012b) Communication: tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination of correlated wavefunctions. J Chem Phys 137(22):221101. http://scitation.aip.org/content/aip/journal/jcp/137/22/10.1063/1.4768241
  31. Holzmann M, Clay RC, Morales MA, Tubman NM, Ceperley DM, Pierleoni C (2016) Theory of finite size effects for electronic quantum monte carlo calculations of liquids and solids. Phys Rev B 94:035126. https://link.aps.org/doi/10.1103/PhysRevB.94.035126 ADSCrossRefGoogle Scholar
  32. Kato T (1957) On the eigenfunctions of many-particle systems in quantum mechanics. Commun Pure Appl Math 10(2):151–177MathSciNetzbMATHCrossRefGoogle Scholar
  33. Klopper W, Samson CCM (2002) Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets. J Chem Phys 116(15):6397–6410ADSCrossRefGoogle Scholar
  34. Knizia G, Adler TB, Werner HJ (2009) Simplified CCSD(T)-F12 methods: theory and benchmarks. J Chem Phys 130(5):054104ADSCrossRefGoogle Scholar
  35. Krack M, Parrinello M (2000) All-electron ab-initio molecular dynamics. Phys Chem Chem Phys 2:2105CrossRefGoogle Scholar
  36. Kubas A, Berger D, Oberhofer H, Maganas D, Reuter K, Neese F (2016) Surface adsorption energetics studied with “gold standard” wave-function-based ab initio methods: Small-molecule binding to tio2(110). J Phys Chem Lett 7(20):4207–4212.  https://doi.org/10.1021/acs.jpclett.6b01845 CrossRefGoogle Scholar
  37. Kudin KN, Scuseria GE (2000) Linear-scaling density-functional theory with gaussian orbitals and periodic boundary conditions: efficient evaluation of energy and forces via the fast multipole method. Phys Rev B 61:16440ADSCrossRefGoogle Scholar
  38. Kutzelnigg W, Klopper W (1991) Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory. J Chem Phys 94(3): 1985–2001ADSGoogle Scholar
  39. Kwee H, Zhang S, Krakauer H (2008) Finite-size correction in many-body electronic structure calculations. Phys Rev Lett 100(12):126404. http://link.aps.org/doi/10.1103/PhysRevLett.100.126404 ADSCrossRefGoogle Scholar
  40. Liao K, Grüneis A (2016) Communication: finite size correction in periodic coupled cluster theory calculations of solids. J Chem Phys 145(14):0–4.  https://doi.org/10.1063/1.4964307
  41. Lippert G, Hutter J, Parrinello M (1999) The gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations. Theory Chem Acc 103:124CrossRefGoogle Scholar
  42. Löwdin PO (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97:1474–1489. https://link.aps.org/doi/10.1103/PhysRev.97.1474 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. Ma Q, Schwilk M, Köppl C, Werner HJ (2017) Scalable electron correlation methods. 4. Parallel explicitly correlated local coupled cluster with pair natural orbitals (pno-lccsd-f12). J Chem Theory Comput 13(10):4871–4896.  https://doi.org/10.1021/acs.jctc.7b00799, pMID:28898081CrossRefGoogle Scholar
  44. Mardirossian N, McClain JD, Chan GKL (2018) Lowering of the complexity of quantum chemistry methods by choice of representation. J Chem Phys 148(4):044106.  https://doi.org/10.1063/1.5007779 ADSCrossRefGoogle Scholar
  45. Marsman M, Grüneis A, Paier J, Kresse G (2009) Second-order Møller–Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set. J Chem Phys 130(18):184103Google Scholar
  46. Maschio L, Usvyat D, Schütz M, Civalleri B (2010) Periodic local Møller–Plesset second order perturbation theory method applied to molecular crystals: study of solid NH3 and CO2 using extended basis sets. J Chem Phys 132:134706ADSCrossRefGoogle Scholar
  47. McClain J, Sun Q, Chan GKL, Berkelbach TC (2017) Gaussian-based coupled-cluster theory for the ground state and band structure of solids. J Chem Theory Comput 13(3):1209–1218.  https://doi.org/10.1021/acs.jctc.7b00049, http://arxiv.org/abs/1701.04832
  48. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46(7):618–622. http://link.aps.org/doi/10.1103/PhysRev.46.618 ADSzbMATHCrossRefGoogle Scholar
  49. Neese F, Wennmohs F, Hansen A (2009) Efficient and accurate local approximations to coupled-electron pair approaches: an attempt to revive the pair natural orbital method. J Chem Phys 130(11):114108. http://scitation.aip.org/content/aip/journal/jcp/130/11/10.1063/1.3086717 ADSCrossRefGoogle Scholar
  50. Neuhauser D, Rabani E, Baer R (2013) Expeditious stochastic approach for MP2 energies in large electronic systems. J Chem Theory Comput 9(1):24–27CrossRefGoogle Scholar
  51. Pack RT, Byers Brown W (1966) Cusp conditions for molecular wavefunctions. J Chem Phys 45(2):556–559ADSCrossRefGoogle Scholar
  52. Parrish RM, Hohenstein EG, Martínez TJ, Sherrill CD (2012) Tensor hypercontraction. II. Least-squares renormalization. J Chem Phys 137(22):224106. http://scitation.aip.org/content/aip/journal/jcp/137/22/10.1063/1.4768233
  53. Paulus B (2006) The method of increments—a wavefunction-based ab initio correlation method for solids. Phys Rep 428(1):1–52.  https://doi.org/10.1016/j.physrep.2006.01.003, http://www.sciencedirect.com/science/article/pii/S0370157306000330
  54. Pisani C, Maschio L, Casassa S, Halo M, Schütz M, Usvyat D (2008) Periodic local MP2 method for the study of electronic correlation in crystals: theory and preliminary applications. J Comput Chem 29:2113–2124CrossRefGoogle Scholar
  55. Pisani C, Schütz M, Casassa S, Usvyat D, Maschio L, Lorenz M, Erba A (2012) Cryscor: a program for the post-hartree-fock treatment of periodic systems. Phys Chem Chem Phys 14:7615CrossRefGoogle Scholar
  56. Pulay P, Saebø S (1986) Orbital-invariant formulation and second-order gradient evaluation in Møller–Plesset perturbation theory. Theor Chim Acta 69(5):357–368.  https://doi.org/10.1007/BF00526697 CrossRefGoogle Scholar
  57. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157(6):479–483.  https://doi.org/10.1016/S0009-2614(89)87395-6, http://www.sciencedirect.com/science/article/pii/S0009261489873956
  58. Rościszewski K, Paulus B, Fulde P, Stoll H (1999) Ab initio calculation of ground-state properties of rare-gas crystals. Phys Rev B 60:7905–7910. http://link.aps.org/doi/10.1103/PhysRevB.60.7905 ADSCrossRefGoogle Scholar
  59. Saebø S, Pulay P (1993) Local treatment of electron correlation. Ann Rev Phys Chem 44(1): 213–236.  https://doi.org/10.1146/annurev.pc.44.100193.001241 ADSCrossRefGoogle Scholar
  60. Schäfer T, Ramberger B, Kresse G (2017) Quartic scaling MP2 for solids: a highly parallelized algorithm in the plane wave basis. J Chem Phys 146(10):104101.  https://doi.org/10.1063/1.4976937 ADSCrossRefGoogle Scholar
  61. Schütz M, Hetzer G, Werner HJ (1999) Low-order scaling local electron correlation methods. I. Linear scaling local MP2. J Chem Phys 111(13):5691–5705.  https://doi.org/10.1063/1.479957 ADSCrossRefGoogle Scholar
  62. Schwerdtfeger P, Assadollahzadeh B, Hermann A (2010) Convergence of the Møller–Plesset perturbation series for the FCC lattices of neon and argon. Phys Rev B Condens Matter 82(20):205111ADSCrossRefGoogle Scholar
  63. Scuseria GE, Ayala PY (1999) Linear scaling coupled cluster and perturbation theories in the atomic orbital basis. J Chem Phys 111(18):8330–8343. http://scitation.aip.org/content/aip/journal/jcp/111/18/10.1063/1.480174 ADSCrossRefGoogle Scholar
  64. Shenvi N, Aggelen Hv, Yang Y, Yang W, Schwerdtfeger C, Mazziotti D (2013) The tensor hypercontracted parametric reduced density matrix algorithm: coupled-cluster accuracy with O(r4) scaling. J Chem Phys 139(5):054110. http://scitation.aip.org/content/aip/journal/jcp/139/5/10.1063/1.4817184 ADSCrossRefGoogle Scholar
  65. Shepherd JJ, Grüneis A, Booth GH, Kresse G, Alavi A (2012) Convergence of many-body wave-function expansions using a plane-wave basis: from homogeneous electron gas to solid state systems. Phys Rev B Condens Matter 86(3):035111ADSCrossRefGoogle Scholar
  66. Stoll H (1992a) The correlation energy of crystalline silicon. Chem Phys Lett 191(6): 548–552.  https://doi.org/10.1016/0009-2614(92)85587-Z, http://www.sciencedirect.com/science/article/pii/000926149285587Z
  67. Stoll H (1992b) Correlation energy of diamond. Phys Rev B 46:6700–6704. http://link.aps.org/doi/10.1103/PhysRevB.46.6700 ADSCrossRefGoogle Scholar
  68. Stoll H (1992c) On the correlation energy of graphite. J Chem Phys 97(11):8449–8454. http://scitation.aip.org/content/aip/journal/jcp/97/11/10.1063/1.463415 ADSCrossRefGoogle Scholar
  69. Stollhoff G (1996) The local ansatz extended. J Chem Phys 105(1):227–234. http://scitation.aip.org/content/aip/journal/jcp/105/1/10.1063/1.471867 ADSCrossRefGoogle Scholar
  70. Stollhoff G, Fulde P (1978) Description of intraatomic correlations by the local approach. Zeitschrift für Physik B Condensed Matter 29(3):231–237.  https://doi.org/10.1007/BF01321187 ADSCrossRefGoogle Scholar
  71. Stollhoff G, Fulde P (1980) On the computation of electronic correlation energies within the local approach. J Chem Phys 73(9):4548–4561. http://scitation.aip.org/content/aip/journal/jcp/73/9/10.1063/1.440693 ADSCrossRefGoogle Scholar
  72. Strain MC, Scuseria GE, Frisch MJ (1996) Achieving linear scaling for the electronic quantum Coulomb problem. Science 271:51–53ADSCrossRefGoogle Scholar
  73. Subotnik JE, Head-Gordon M (2005) A local correlation model that yields intrinsically smooth potential-energy surfaces. J Chem Phys 123(6):064108.  https://doi.org/10.1063/1.2000252 ADSCrossRefGoogle Scholar
  74. Sun Q, Berkelbach TC, Blunt NS, Booth GH, Guo S, Li Z, Liu J, McClain J, Sayfutyarova ER, Sharma S, Wouters S, Chan GK-L (2018) PySCF: the python–based simulations of chemistry framework. Wiley Interdiscip Rev Comput Mol Sci 8(1):e1340. https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1340 CrossRefGoogle Scholar
  75. Ten-no S (2004a) Explicitly correlated second order perturbation theory: introduction of a rational generator and numerical quadratures. J Chem Phys 121(1):117–129.  https://doi.org/10.1063/1.1757439 ADSCrossRefGoogle Scholar
  76. Ten-no S (2004b) Initiation of explicitly correlated slater-type geminal theory. Chem Phys Lett 398(1):56–61.  https://doi.org/10.1016/j.cplett.2004.09.041, http://www.sciencedirect.com/science/article/pii/S000926140401379X
  77. Usvyat D (2013) Linear-scaling explicitly correlated treatment of solids: periodic local MP2-F12 method. J Chem Phys 139(19):194101ADSCrossRefGoogle Scholar
  78. Usvyat D, Sadeghian K, Maschio L, Schütz M (2012) Geometrical frustration of an argon monolayer adsorbed on the MgO (100) surface: an accurate periodic ab initio study. Phys Rev B 86:045412. https://link.aps.org/doi/10.1103/PhysRevB.86.045412 ADSCrossRefGoogle Scholar
  79. VandeVondele J, Hutter J (2003) An efficient orbital transformation method for electronic structure calculations. J Chem Phys 118:4365ADSCrossRefGoogle Scholar
  80. Werner HJ, Adler TB, Manby FR (2007) General orbital invariant MP2-F12 theory. J Chem Phys 126(16):164102ADSCrossRefGoogle Scholar
  81. Willow SY, Kim KS, Hirata S (2012) Stochastic evaluation of second-order many-body perturbation energies. J Chem Phys 137(20):204122.  https://doi.org/10.1063/1.4768697 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsVienna University of TechnologyWienAustria

Personalised recommendations