Adaptive Physics Refinement at the Microstructure Scale

Reference work entry


A long-sought goal of computational materials science and engineering has been a simulation framework that spans all necessary length and time scales, potentially from electronic structure to structural engineering, providing the appropriate level of physics fidelity where needed and enabling the user to trade off accuracy and computational time in an optimal manner. Analogous to adaptive mesh refinement methods that dynamically (and automatically) coarsen and refine a computational mesh based on local requirements, adaptive physics refinement methods utilize higher-fidelity physics models as needed, e.g., replacing a phenomenological constitutive model with a direct polycrystal plasticity simulation. While there have been several demonstrations of similar concurrent multiscale methods over the past 20–30 years, only now is a more general capability becoming viable due to advances in algorithms and computer architectures and middleware. In this chapter, we briefly review this history, focusing on two methods in particular: the heterogeneous multiscale method and adaptive sampling. The computational workflow, data, and runtime requirements of these methods are used to identify key enabling technologies that have recently gained widespread adoption, including task-based programming models, heterogeneous computer architectures, database, and machine learning algorithms.


  1. Abraham FF, Broughton JQ, Bernstein N, Kaxiras E (1998) Spanning the length scales in dynamic simulation. Comput Phys 12(6):538–546ADSCrossRefGoogle Scholar
  2. Aerospike, Inc (2017) Aerospike NoSQL database.
  3. Alowayyed S, Groen D, Coveney PV, Hoekstra AG (2017) Multiscale computing in the exascale era. J Comput Sci 22:15–25CrossRefGoogle Scholar
  4. Andoni A, Indyk P (2008) Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun ACM 51(1):117–122CrossRefGoogle Scholar
  5. Arsenlis A, Barton N, Becker R, Rudd R (2006) Generalized in situ adaptive tabulation for constitutive model evaluation in plasticity. Comput Methods Appl Mech Eng 196(1–3):1–13ADSzbMATHCrossRefGoogle Scholar
  6. Barnes BC, Leiter KW, Becker R, Knap J, Brennan JK (2017a) LAMMPS integrated materials engine (LIME) for efficient automation of particle-based simulations: application to equation of state generation. Model Simul Mater Sci Eng 25(5):055006ADSCrossRefGoogle Scholar
  7. Barnes BC, Spear CE, Leiter KW, Becker R, Knap J, Lisal M, Brennan JK (2017b) Hierarchical multiscale framework for materials modeling: equation of state implementation and application to a Taylor Anvil impact test of RDX. In: Chau R, Germann T, Oleynik I, Peiris S, Ravelo R, Sewell T (eds) Shock compression of condensed matter – 2015, Tampa. AIP conference proceedings, vol 1793Google Scholar
  8. Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104:136403ADSCrossRefGoogle Scholar
  9. Barton NR, Knap J, Arsenlis A, Becker R, Hornung RD, Jefferson DR (2008) Embedded polycrystal plasticity and adaptive sampling. Int J Plast 24(2):242–266zbMATHCrossRefGoogle Scholar
  10. Barton NR, Bernier JV, Knap J, Sunwoo AJ, Cerreta EK, Turner TJ (2011) A call to arms for task parallelism in multi-scale materials modeling. Int J Numer Methods Eng 86:744–764zbMATHCrossRefGoogle Scholar
  11. Barton NR, Bernier JV, Lebensohn RA, Boyce DE (2015) The use of discrete harmonics in direct multi-scale embedding of polycrystal plasticity. Comput Methods Appl Mech Eng 283:224ADSCrossRefGoogle Scholar
  12. Bernstein N, Kermode JR, Csányi G (2009) Hybrid atomistic simulation methods for materials systems. Rep Prog Phys 72(2):026501ADSCrossRefGoogle Scholar
  13. Broughton JQ, Abraham FF, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales: methodology and application. Phys Rev B Condens Matter Mater Phys 60(4):2391–2403ADSCrossRefGoogle Scholar
  14. ExMatEx (2015a) CoHMM: a co-design proxy application for the Heterogeneous Multiscale Method (HMM).
  15. ExMatEx (2015b) CoMD: classical molecular dynamics proxy application.
  16. Glosli JN, Richards DF, Caspersen KJ, Rudd RE, Gunnels JA, Streitz FH (2007) Extending stability beyond CPU millennium: a micron-scale atomistic simulation of Kelvin-Helmholtz instability. In: SC ’07: Proceedings of the 2007 ACM/IEEE conference on supercomputing. ACM, New York, pp 1–11Google Scholar
  17. Henkelman G, Jónsson H (2001) Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J Chem Phys 115:9657ADSCrossRefGoogle Scholar
  18. Karlin I, Bhatele A, Keasler J, Chamberlain BL, Cohen J, DeVito Z, Haque R, Laney D, Luke E, Wang F, Richards D, Schulz M, Still C (2013) Exploring traditional and emerging parallel programming models using a proxy application. In: 27th IEEE international parallel & distributed processing symposium (IEEE IPDPS 2013), BostonGoogle Scholar
  19. Knap J, Barton NR, Hornung RD, Arsenlis A, Becker R, Jefferson DR (2008) Adaptive sampling in hierarchical simulation. Int J Numer Methods Eng 76(4):572–600MathSciNetzbMATHCrossRefGoogle Scholar
  20. Knap J, Spear CE, Borodin O, Leiter KW (2015) Advancing a distributed multi-scale computing framework for large-scale high-throughput discovery in materials science. Nanotechnology 26(43):434004ADSCrossRefGoogle Scholar
  21. Knap J, Spear C, Leiter K, Becker R, Powell D (2016) A computational framework for scale-bridging in multi-scale simulations. Int J Numer Methods Eng 108(13):1649–1666MathSciNetCrossRefGoogle Scholar
  22. Kohlhoff S, Gumbsch P, Fischmeister HF (1991) Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos Mag A 64(4):851–878ADSCrossRefGoogle Scholar
  23. Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using fast Fourier Transform. Acta Mater 49(14):2723–2737CrossRefGoogle Scholar
  24. Lebensohn RA, Tomé C (1993) A self-consistent approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41:2611CrossRefGoogle Scholar
  25. Li Z, Kermode JR, De Vita A (2015) Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys Rev Lett 114:096405ADSCrossRefGoogle Scholar
  26. Lu G, Kaxiras E (2005) Overview of multiscale simulations of materials. In: Rieth M, Schommers W (eds) Handbook of theoretical and computational technology, vol X. American Scientific Publishers, Stevenson Ranch, pp 1–33Google Scholar
  27. Miller R, Tadmor E (2002) The quasicontinuum method: overview, applications and current directions. J Compu-Aided Mater Des 9(3):203–239ADSCrossRefGoogle Scholar
  28. Miller RE, Tadmor EB (2009) A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model Simul Mater Sci Eng 17(5):053001ADSCrossRefGoogle Scholar
  29. Muja M, Lowe DG (2014) Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans Pattern Anal Mach Intell 36(11):2227–2240CrossRefGoogle Scholar
  30. Noble CR, Anderson AT, Barton NR, Bramwell JA, Capps A, Chang MH, Chou JJ, Dawson DM, Diana ER, Dunn TA, Faux DR, Fisher AC, Greene PT, Heinz I, Kanarska Y, Khairallah SA, Liu BT, Margraf JD, Nichols AL, Nourgaliev RN, Puso MA, Reus JF, Robinson PB, Shestakov AI, Solberg JM, Taller D, Tsuji PH, White CA, White JL (2017) ALE3D: an arbitrary Lagrangian-Eulerian multi-physics code.
  31. O’Hara S, Draper BA (2013) Are you using the right approximate nearest neighbor algorithm? In: 2013 IEEE workshop on applications of computer vision (WACV), Clearwater Beach, pp 9–14Google Scholar
  32. Ousterhout J, Agrawal P, Erickson D, Kozyrakis C, Leverich J, Mazières D, Mitra S, Narayanan A, Parulkar G, Rosenblum M, et al (2010) The case for RAMClouds: scalable high-performance storage entirely in DRAM. ACM SIGOPS Oper Syst Rev 43(4):92–105CrossRefGoogle Scholar
  33. Owhadi H, Scovel C, Sullivan TJ, McKerns M, Ortiz M (2013) Optimal uncertainty quantification. SIAM Rev 55(2):271–345MathSciNetzbMATHCrossRefGoogle Scholar
  34. Pavel RS, McPherson AL, Germann TC, Junghans C (2015) Database assisted distribution to improve fault tolerance for multiphysics applications. In: Proceedings of the 2nd international workshop on hardware-software co-design for high performance computing, Co-HPC ’15. ACM, New York, pp 4:1–4:8Google Scholar
  35. Plimpton S (1995) LAMMPS: large-scale atomic/molecular massively parallel simulator.
  36. Redislabs (2018) Redis database.
  37. Reeve ST, Strachan A (2017) Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification. J Comput Phys 334:207–220ADSMathSciNetCrossRefGoogle Scholar
  38. Roehm D, Pavel R, Barros K, Rouet-Leduc B, McPherson A, Germann T, Junghans C (2015) Distributed database kriging for adaptive sampling (D 2KAS). Comput Phys Commun 192: 138–147CrossRefADSGoogle Scholar
  39. Rouet-Leduc B, Barros K, Cieren E, Elango V, Junghans C, Lookman T, Mohd-Yusof J, Pavel RS, Rivera AY, Roehm D, McPherson AL, Germann TC (2014) Spatial adaptive sampling in multiscale simulation. Comput Phys Commun 185(7):1857–1864ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. Rudd RE, Broughton JQ (1998) Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys Rev B 58:R5893–R5896ADSCrossRefGoogle Scholar
  41. Sadalage PJ, Fowler M (2012) NoSQL distilled: a brief guide to the emerging world of polyglot persistence, 1st edn. Addison-Wesley Professional, BostonGoogle Scholar
  42. Segurado J, Lebensohn RA, LLorca J, Tomé CN (2012) Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements. Int J Plast 28:124CrossRefGoogle Scholar
  43. Shakhnarovich G, Darrell T, Indyk P (2006) Nearest-neighbor methods in learning and vision: theory and practice (Neural Information Processing). The MIT Press, CambridgeCrossRefGoogle Scholar
  44. Strachan A, Mahadevan S, Hombal V, Sun L (2013) Functional derivatives for uncertainty quantification and error estimation and reduction via optimal high-fidelity simulations. Model Simul Mater Sci Eng 21(6):065009ADSCrossRefGoogle Scholar
  45. Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563ADSCrossRefGoogle Scholar
  46. Trott CR, Hammond SD, Thompson AP (2014) SNAP: strong scaling high fidelity molecular dynamics simulations on leadership-class computing platforms. In: Proceedings of the 29th international conference on supercomputing, ISC 2014, vol 8488. Springer, New York, pp 19–34Google Scholar
  47. Trushin O, Karim A, Kara A, Rahman TS (2005) Self-learning kinetic Monte Carlo method: application to Cu(111). Phys Rev B 72:115401ADSCrossRefGoogle Scholar
  48. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227–249CrossRefGoogle Scholar
  49. Weinan E, Engquist B (2003a) The heterogeneous multiscale methods. Commun Math Sci 1(1): 87–132MathSciNetzbMATHCrossRefGoogle Scholar
  50. Weinan E, Engquist B (2003b) Multiscale modeling and computation. Not Am Math Soc 50(9):1062–1070MathSciNetzbMATHGoogle Scholar
  51. Weinan E, Engquist B, Huang Z (2003) Heterogeneous multiscale method: a general methodology for multiscale modeling. Phys Rev B 67(9):092101ADSCrossRefGoogle Scholar
  52. Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2(3):367–450MathSciNetzbMATHGoogle Scholar
  53. Xu H, Osetsky YN, Stoller RE (2011) Simulating complex atomistic processes: on-the-fly kinetic Monte Carlo scheme with selective active volumes. Phys Rev B 84:132103ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Theoretical Division (T-1)Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations