MP2- and RPA-Based Ab Initio Molecular Dynamics and Monte Carlo Sampling

Reference work entry


Nonlocal correlation methods based on wave function theory are developed for application to condensed matter systems. These methods include MP2 and direct-RPA theory as well as double-hybrid functionals. Analytic gradients and stress tensors for MP2 theory in the gamma point approximation have been developed.

Sampling complex systems at ambient temperature, for example, liquid water, becomes possible with efficient algorithms for massively parallel computers. Results show a qualitative improvement over standard local density functionals as well as hybrid functionals.



This research was partly supported by NCCR MARVEL, funded by the Swiss National Science Foundation. We acknowledge that the results of this research have been achieved using the PRACE Research Infrastructure resource Hermit based in Germany at Stuttgart (HLRS). Additional calculations were enabled by the Swiss National Supercomputer Centre (CSCS).


  1. Adriaanse C, Cheng J, Chau V, Sulpizi M, VandeVondele J, Sprik M (2012) Aqueous redox chemistry and the electronic band structure of liquid water. J Phys Chem Lett 3:3411–3415CrossRefGoogle Scholar
  2. Borštnik U, VandeVondele J, Weber V, Hutter J (2014) Sparse matrix multiplication: the distributed block-compressed sparse row library. Parallel Comput 40:47–58MathSciNetCrossRefGoogle Scholar
  3. Burow AM, Bates JE, Furche F, Eshuis H (2014) Analytical first-order molecular properties and forces within the adiabatic connection random phase approximation. J Chem Theory Comput 10:180–194CrossRefGoogle Scholar
  4. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474ADSCrossRefGoogle Scholar
  5. Cheng J, VandeVondele J (2016) Calculation of electrochemical energy levels in water using the random phase approximation and a double hybrid functional. Phys Rev Lett 116:086402ADSCrossRefGoogle Scholar
  6. Del Ben M, Hutter J, VandeVondele J (2012) Second-order Møller–Plesset perturbation theory in the condensed phase: an efficient and massively parallel Gaussian and plane waves approach. J Chem Theory Comput 8:4177–4188CrossRefGoogle Scholar
  7. Del Ben M, Hutter J, VandeVondele J (2013a) Electron correlation in the condensed phase from a resolution of identity approach based on the Gaussian and plane waves scheme. J Chem Theory Comput 9:2654–2671CrossRefGoogle Scholar
  8. Del Ben M, Schönherr M, Hutter J, VandeVondele J (2013b) Bulk liquid water at ambient temperature and pressure from MP2 theory. J Phys Chem Lett 4:3753–3759CrossRefGoogle Scholar
  9. Del Ben M, Hutter J, VandeVondele J (2015a) Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach. J Chem Phys 143:102803ADSCrossRefGoogle Scholar
  10. Del Ben M, Hutter J, VandeVondele J (2015b) Probing the structural and dynamical properties of liquid water with models including non-local electron correlation. J Chem Phys 143:054506ADSCrossRefGoogle Scholar
  11. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401ADSCrossRefGoogle Scholar
  12. DiStasio RA, Santra B, Li Z, Wu X, Car R (2014) The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water. J Chem Phys 141:084502ADSCrossRefGoogle Scholar
  13. Dunlap BI, Connolly JWD, Sabin JR (1979) On some approximations in applications of X alpha theory. J Chem Phys 71:3396–3402ADSCrossRefGoogle Scholar
  14. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023Google Scholar
  15. Errington JR, Debenedetti PG (2001) Relationship between structural order and the anomalies of liquid water. Nature 409:318–321ADSCrossRefGoogle Scholar
  16. Eshuis H, Furche F (2012) Basis set convergence of molecular correlation energy differences within the random phase approximation. J Chem Phys 136:084105ADSCrossRefGoogle Scholar
  17. Eshuis H, Yarkony J, Furche F (2010) Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. J Chem Phys 132:234114ADSCrossRefGoogle Scholar
  18. Eshuis H, Bates J, Furche F (2012) Electron correlation methods based on the random phase approximation. Theor Chem Acc 131:1084CrossRefGoogle Scholar
  19. Feyereisen M, Fitzgerald G, Komornicki A (1993) Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem Phys Lett 208:359–363ADSCrossRefGoogle Scholar
  20. Furche F (2008) Developing the random phase approximation into a practical post-Kohn–Sham correlation model. J Chem Phys 129:114105ADSCrossRefGoogle Scholar
  21. García-González P, Fernández JJ, Marini A, Rubio A (2007) Advanced correlation functionals: application to bulk materials and localized systems. J Phys Chem A 111:12458–12465CrossRefGoogle Scholar
  22. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54:1703–1710ADSCrossRefGoogle Scholar
  23. Goerigk L, Grimme S (2011) Efficient and accurate double-hybrid-meta-GGA density functionals: evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 7:291–309CrossRefGoogle Scholar
  24. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108ADSCrossRefGoogle Scholar
  25. Grimme S, Steinmetz M (2016) A computationally efficient double hybrid density functional based on the random phase approximation. Phys Chem Chem Phys 18:20926–20937CrossRefGoogle Scholar
  26. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104ADSCrossRefGoogle Scholar
  27. Guidon M, Schiffmann F, Hutter J, VandeVondele J (2008) Ab initio molecular dynamics using hybrid density functionals. J Chem Phys 128:214104ADSCrossRefGoogle Scholar
  28. Guidon M, Hutter J, VandeVondele J (2009) Robust periodic Hartree–Fock exchange for large-scale simulations using Gaussian basis sets. J Chem Theory Comput 5:3010–3021CrossRefGoogle Scholar
  29. Handy NC, Schaefer HF (1984) On the evaluation of analytic energy derivatives for correlated wave functions. J Chem Phys 81:5031–5033ADSCrossRefGoogle Scholar
  30. Hobbs P (1974) Ice physics. Clarendon Press, OxfordGoogle Scholar
  31. Hutter J (2012) Car-Parrinello molecular dynamics. WIREs Comput Mol Sci 2:604–612CrossRefGoogle Scholar
  32. Iftimie R, Salahub D, Wei D, Schofield J (2000) Using a classical potential as an efficient importance function for sampling from an ab initio potential. J Chem Phys 113: 4852–4862ADSCrossRefGoogle Scholar
  33. Jurecka P, Sponer J, Cerny J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993CrossRefGoogle Scholar
  34. Kapil V, VandeVondele J, Ceriotti M (2016) Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: using density functional theory to accelerate wavefunction methods. J Chem Phys 144:054111ADSCrossRefGoogle Scholar
  35. Klimeš J, Bowler D, Michaelides A (2010) Chemical accuracy for the van der Waals density functional. J Phys Condens Matter 22:022201ADSCrossRefGoogle Scholar
  36. Klimeš J, Bowler D, Michaelides A (2011) Van der Waals density functionals applied to solids. Phys Rev B 83:1–13CrossRefGoogle Scholar
  37. Laasonen K, Sprik M, Parrinello M, Car R (1993) “Ab initio” liquid water. J Chem Phys 99: 9080–9089ADSCrossRefGoogle Scholar
  38. Lippert G, Hutter J, Parrinello M (1997) A hybrid Gaussian and plane wave density functional scheme. Mol Phys 92:477–488ADSCrossRefGoogle Scholar
  39. Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, LeidenCrossRefGoogle Scholar
  40. McGrath MJ, Siepmann JI, Kuo IFW, Mundy CJ, VandeVondele J, Sprik M, Hutter J, Mohamed F, Krack M, Parrinello M (2005a) Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles. Comput Phys Commun 169:289–294ADSCrossRefGoogle Scholar
  41. McGrath MJ, Siepmann JI, Kuo IFW, Mundy CJ, VandeVondele J, Hutter J, Mohamed F, Krack M (2005b) Isobaric-isothermal Monte Carlo simulations from first principles: application to liquid water at ambient conditions. ChemPhysChem 6:1894–1901CrossRefGoogle Scholar
  42. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622ADSzbMATHCrossRefGoogle Scholar
  43. Neese F, Schwabe T, Grimme S (2007) Analytic derivatives for perturbatively corrected “double hybrid” density functionals: theory, implementation, and applications. J Chem Phys 126:124115ADSCrossRefGoogle Scholar
  44. Nielsen OH, Martin RM (1985) Quantum-mechanical theory of stress and force. Phys Rev B 32:3780–3791ADSCrossRefGoogle Scholar
  45. Nilsson A, Pettersson L (2011) Perspective on the structure of liquid water. Chem Phys 389:1–34CrossRefGoogle Scholar
  46. Paier J, Ren X, Rinke P, Scuseria GE, Grüneis A, Kresse G, Scheffler M (2012) Assessment of correlation energies based on the random-phase approximation. New J Phys 14:043002CrossRefGoogle Scholar
  47. Pamuk B, Soler JM, Ramírez R, Herrero CP, Stephens PW, Allen PB, Fernández-Serra MV (2012) Anomalous nuclear quantum effects in ice. Phys Rev Lett 108:193003ADSCrossRefGoogle Scholar
  48. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868ADSCrossRefGoogle Scholar
  49. Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123:062201ADSCrossRefGoogle Scholar
  50. Rahman A, Stillinger FH (1971) Molecular dynamics study of liquid water. J Chem Phys 55:3336–3359ADSCrossRefGoogle Scholar
  51. Ramberger B, Schäfer T, Kresse G (2017) Analytic interatomic forces in the random phase approximation. Phys Rev Lett 118:106403ADSCrossRefGoogle Scholar
  52. Ren X, Rinke P, Joas C, Scheffler M (2012) Random-phase approximation and its applications in computational chemistry and materials science. J Mater Sci 47:7447ADSCrossRefGoogle Scholar
  53. Röttger K, Endriss A, Ihringer J, Doyle S, Kuhs WF (2012) Lattice constants and thermal expansion of H2O and D2O Ice Ih between 10 and 265K. Addendum. Acta Crystallogr Sec B 68:91CrossRefGoogle Scholar
  54. Rybkin VV, VandeVondele J (2016) Spin-unrestricted second-order Møller–Plesset (MP2) forces for the condensed phase: from molecular radicals to f-centers in solids. J Chem Theory Comput 12:2214–2223CrossRefGoogle Scholar
  55. Santra B, Klimeš J, Tkatchenko A, Alfè D, Slater B, Michaelides A, Car R, Scheffler M (2013) On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures. J Chem Phys 139:154702ADSCrossRefGoogle Scholar
  56. Schmidt J, VandeVondele J, Kuo IFW, Sebastiani D, Siepmann JI, Hutter J, Mundy CJ (2009) Isobaric–isothermal molecular dynamics simulations utilizing density functional theory: an assessment of the structure and density of water at near–ambient conditions. J Phys Chem B 113:11959–11964CrossRefGoogle Scholar
  57. Schönherr M, Slater B, Hutter J, VandeVondele J (2014) Dielectric properties of water ice, the ice Ih/XI phase transition, and an assessment of density functional theory. J Phys Chem B 118: 590–596CrossRefGoogle Scholar
  58. Scuseria GE, Henderson TM, Sorensen DC (2008) The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach. J Chem Phys 129:231101ADSCrossRefGoogle Scholar
  59. Skinner LB, Huang C, Schlesinger D, Pettersson LGM, Nilsson A, Benmore CJ (2013) Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range. J Chem Phys 138:074506ADSCrossRefGoogle Scholar
  60. Soper AK (2013) The radial distribution functions of water as derived from radiation total scattering experiments: is there anything we can say for sure? ISRN Phys Chem 2013:279463CrossRefGoogle Scholar
  61. Todorova T, Seitsonen AP, Hutter J, Kuo IFW, Mundy CJ (2006) Molecular dynamics simulation of liquid water: hybrid density functionals. J Phys Chem B 110:3685–3691CrossRefGoogle Scholar
  62. Vahtras O, Almlöf J, Feyereisen M (1993) Integral approximations for LCAO-SCF calculations. Chem Phys Lett 213:514–518ADSCrossRefGoogle Scholar
  63. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005a) Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167:103–128ADSCrossRefGoogle Scholar
  64. VandeVondele J, Mohamed F, Krack M, Hutter J, Sprik M, Parrinello M (2005b) The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water. J Chem Phys 122:014515ADSCrossRefGoogle Scholar
  65. VandeVondele J, Troester P, Tavan P, Mathias G (2012) Vibrational spectra of phosphate ions in aqueous solution probed by first-principles molecular dynamics. J Phys Chem A 116: 2466–2474CrossRefGoogle Scholar
  66. Wang J, Román-Pérez G, Soler JM, Artacho E, Fernández-Serra MV (2011) Density, structure, and dynamics of water: the effect of van der Waals interactions. J Chem Phys 134:024516ADSCrossRefGoogle Scholar
  67. Weigend F, Häser M (1997) RI-MP2: first derivatives and global consistency. Theor Chem Acc 97:331–340CrossRefGoogle Scholar
  68. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem Phys Lett 294:143–152ADSCrossRefGoogle Scholar
  69. Whalley E (1984) Energies of the phases of ice at zero temperature and pressure. J Chem Phys 81:4087–4092ADSCrossRefGoogle Scholar
  70. Whitten JL (1973) Coulombic potential energy integrals and approximations. J Chem Phys 58:4496–4501ADSCrossRefGoogle Scholar
  71. Wilhelm J, Seewald P, Del Ben M, Hutter J (2016) Large-scale cubic-scaling random phase approximation correlation energy calculations using a Gaussian basis. J Chem Theory Comput 12:5851–5859CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  1. 1.Institut für ChemieUniversität ZurichZurichSwitzerland
  2. 2.Computational Research DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Scientific Software and Libraries UnitCSCS, ETH ZürichZürichSwitzerland

Personalised recommendations