Advertisement

Line Dislocation Dynamics Simulations with Complex Physics

  • R. B. SillsEmail author
  • S. Aubry
Reference work entry
  • 71 Downloads

Abstract

Discrete dislocation dynamics (DDD) simulations provide a technique for examining the effects of fundamental dislocation physics on the plastic response of crystalline solids. Many DDD simulations focus on relatively “simple” materials and loading conditions, such as glide-motion-dominated plasticity of pure cubic crystals. The goal of this chapter is to provide an overview of the more “complex” physical aspects of dislocation-mediated plasticity in the context of DDD. We consider both physics that are intrinsic to the crystal lattice (elastic anisotropy, nonlinear drag, and low crystallographic symmetry) and extrinsic physics that are due to defects other than dislocations (solutes, vacancies, precipitates, and grain boundaries). For each of these classes of physics, we first discuss the conditions under which they are relevant, followed by an examination of the fundamental ways in which the behaviors of dislocations are affected by the physics, and finally a presentation of the methods that have been developed for incorporating the physics in DDD. We end the chapter by discussing three example simulations where complex physics are consequential.

Notes

Acknowledgments

This paper describes objective technical results and analysis. Any subjective views of opinions that might be expressed in this paper do not necessarily represent the views of the U. S. Department of Energy of the United States Government.

References

  1. Agnew S, Horton J, MH Y (2002) Transmission electron microscopy investigation of <c+a> dislocations in mg and α-solids solution Mg-Li alloys. Metall Mater Trans A 33A:851Google Scholar
  2. Argon AS (2008) Strengthening mechanisms in crystal plasticity. Oxford University Press, OxfordGoogle Scholar
  3. Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15(6):553–595CrossRefADSGoogle Scholar
  4. Aubry S, Arsenlis A (2013) Use of spherical harmonics for dislocation dynamics in anisotropic elastic media. Model Simul Mater Sci Eng 21(6):065013CrossRefADSGoogle Scholar
  5. Aubry S, Fitzgerald S, Dudarev S, Cai W (2011) Equilibrium shapes of dislocation shear loops in anisotropic -Fe. Model Simul Mater Sci Eng 19:065006CrossRefADSGoogle Scholar
  6. Aubry S, Rhee M, Hommes G, Bulatov V, Arsenlis A (2016) Dislocation dynamics in hexagonal close-packed crystals. J Mech Phys Solids 94:105–126CrossRefADSMathSciNetGoogle Scholar
  7. Bakó B, Clouet E, Dupuy LM, Blétry M (2011) Dislocation dynamics simulations with climb: kinetics of dislocation loop coarsening controlled by bulk diffusion. Philos Mag 91:3173–3191CrossRefADSGoogle Scholar
  8. Barton NR, Bernier JV, Becker R, Arsenlis A, Cavallo R, Marian J, Rhee M, Park HS, Remington BA, Olson RT (2011) A multiscale strength model for extreme loading conditions. J Appl Phys 109(7):073501CrossRefADSGoogle Scholar
  9. Biswas A, Siegel DJ, Wolverton C, Seidman DN (2011) Precipitates in Al-Cu alloys revisited: atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Mater 59(15):6187–6204CrossRefGoogle Scholar
  10. Boyd JD, Nicholson RB (1971) The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys. Acta Metall 19: 1379–1391CrossRefGoogle Scholar
  11. Bulatov VV, Cai W (2006) Computer simulations of dislocations. Oxford University Press, OxfordzbMATHGoogle Scholar
  12. Cai W, Bulatov V (2004) Mobility laws in dislocation dynamics simulations. Mat Sci Eng A 387–389:277–281CrossRefGoogle Scholar
  13. Cai W, Nix WD (2016) Imperfections in crystalline solids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Cai W, Sills RB, Barnett DM, Nix WD (2014) Modeling a distribution of point defects as misfitting inclusions in stressed solids. J Mech Phys Sol 66:154–171CrossRefADSzbMATHGoogle Scholar
  15. Chateau JP, Delafosse D, Magnin T (2002) Numerical simulations of hydrogen-dislocation interactions in FCC stainless steels. Acta Mater 50(6):1507–1522CrossRefGoogle Scholar
  16. Chen Q, Liu XY, Biner SB (2008) Solute and dislocation junction interactions. Acta Mater 56(13):2937–2947CrossRefGoogle Scholar
  17. Cottrell AH, Jaswon MA (1949) Distribution of solute atoms round a slow dislocation. Proc Phys Soc A 62:104–114CrossRefzbMATHGoogle Scholar
  18. Crone CC, Chung PW, Leiter KW, Knap J, Aubry S, Hommes G, Arsenlis A (2014) A multiply parallel implementation of finite element-based discrete dislocation dynamics for arbitrary geometries. Model Simul Mater Sci Eng 22(3):035014CrossRefADSGoogle Scholar
  19. de Koning M, Kurtz RJ, Bulatov VV, Henager CH, Hoagland RG, Cai W, Nomura M (2003) Modeling of dislocation-grain boundary interactions in FCC metals. J Nucl Mater 323:281–289CrossRefADSGoogle Scholar
  20. Delafosse D (2012) Hydrogen effects on the plasticity of face centred cubic (FCC) crystals, chap 9. In: Gangloff RP, Somerday BP (eds) Gaseous hydrogen embrittlement of materials in energy technologies. Mechanisms, modelling and future developments, vol 2. Woodhead Publishing Limited, Cambridge, pp 247–285CrossRefGoogle Scholar
  21. Eshelby JD (1961) Elastic inclusions and inhomogeneities, chap 3. In: Sneddon IN, Hill R (eds) Progress in solid mechanics, vol II. North-Holland Publishing Company, Amsterdam, pp 87–140Google Scholar
  22. Fan H, Li Z, Huang M (2012) Toward a further understanding of intermittent plastic responses in the compress single/bicrystalline micropillars. Scr Mater 66:813–816CrossRefGoogle Scholar
  23. Fan H, Aubry S, Arsenlis A, El-Awady JA (2015) The role of twinning deformation on the hardening reponse of polycrsytalline magnesium from discrete dislocation dynamics simulations. Acta Mater 92:126–139CrossRefGoogle Scholar
  24. Fitzgerald S, Aubry S, Dudarev S, Cai W (2012) Discrete dislocation dynamics simulation of Frank-Read sources in anisotropic α-fe. Modell Simul Mater Sci Eng 20:045022CrossRefADSGoogle Scholar
  25. Gao Y, Zhuang Z, Liu ZL, You XC, Zhao XC, Zhang ZH (2011) Investigations of pipe-diffusion-based dislocation climb by discrete dislocation dynamics. Int J Plast 27:1055–1071CrossRefzbMATHGoogle Scholar
  26. Gilbert MR, Queyreau S, Marian J (2011) Stress and temperature dependence of screw dislocation in α-Fe by molecular dynamics. Phys Rev B 85:174103CrossRefADSGoogle Scholar
  27. Groh S, Marin EB, Horstemeyer MF, Bammann DJ (2009) Dislocation motion in magnesium: a study by molecular statics and molecular dynamics. Modell Simul Mater Sci Eng 17(7):075009CrossRefADSGoogle Scholar
  28. Gu Y, Xiang Y, Quek SS, Srolovitz DJ (2015) Three-dimensional formulation of dislocation climb. J Mech Phys Sol 83:319–337CrossRefADSMathSciNetGoogle Scholar
  29. Hirth JP, Lothe J (1992) Theory of dislocations. Wiley, New YorkzbMATHGoogle Scholar
  30. Hull D, Bacon DJ (2011) Introduction to dislocations. Butterworth-Heinemann, OxfordGoogle Scholar
  31. Kirchheim R (2007) Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation II. Experimental evidence and consequences. Acta Mater 55:5139–5148CrossRefGoogle Scholar
  32. Kubin LP (2013) Dislocations, mesoscale simulations, and plastic flow. Oxford University Press, OxfordCrossRefGoogle Scholar
  33. Kubin LP, Canova G, Condat M, Devincre B, Pontikis V, Bréchet Y (1992) Dislocation microstructures and plastic flow: a 3D simulation. Solid State Phenom 23 & 24:455–472Google Scholar
  34. Lubarda V, Blume J, Needleman A (1993) An analysis of equilibrium dislocation distributions. Acta Metal Mater 41(2):625–642CrossRefGoogle Scholar
  35. Marian J, Caro A (2006) Moving dislocations in disordered alloys: connecting continuum and discrete models with atomistic simulations. Phys Rev B 74:024113CrossRefADSGoogle Scholar
  36. Medvedeva NI, Gornostyrev YN, Freeman AJ (2005) Solid solution softening in BCC Mo alloys: effect of transition-metal additions on dislocation structure and mobility. Phys Rev B 72:124107CrossRefGoogle Scholar
  37. Mohles V (2001) Orowan process controlled dislocation glide in materials containing incoherent particles. Mat Sci Eng A 309–310:265–269CrossRefGoogle Scholar
  38. Mohles V (2003) Superposition of dispersion strengthening and size-mismatch strengthening: computer simulations. Philos Mag Lett 83:9–19CrossRefADSGoogle Scholar
  39. Mohles V (2004) Dislocation dynamics simulations of particle strengthening, chap 17. In: Raabe D, Roters F, Barlat F, Chen LQ (eds) Continuum scale simulation of engineering materials. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 368–388Google Scholar
  40. Mohles V, Fruhstorfer B (2002) Computer simulations of Orowan process controlled dislocation glide in particle arrangements of various randomness. Acta Mater 50:2503–2516CrossRefGoogle Scholar
  41. Monnet G (2006) Investigation of precipitation hardening by dislocation dynamics simulations. Philos Mag 86(36):5827–5941CrossRefGoogle Scholar
  42. Monnet G (2015) Multiscale modeling of precipitation hardening: application to the FeCr alloys. Acta Mater 95:302–311CrossRefGoogle Scholar
  43. Monnet G, Devincre B (2006) Solute friction and forest interaction. Philos Magaz 86(11): 1555–1565CrossRefADSGoogle Scholar
  44. Mordehai D, Clouet E, Fivel M, Verdier M (2008) Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics. Philos Mag 88:899–925CrossRefADSGoogle Scholar
  45. Munday LB, Crone JC, Knap J (2015) The role of free surfaces on the formation of prismatic dislocation loops. Scr Mater 103:65–68CrossRefGoogle Scholar
  46. Mura T (1987) Micromechanics of defects in solids. Kluwer Academic Publishers, Dordrecht (NL)CrossRefzbMATHGoogle Scholar
  47. Niu X, Luo T, Lu J, Xiang Y (2017) Dislocation climb models from atomistic scheme to dislocation dynamics. J Mech Phys Sol 99:242–258CrossRefADSMathSciNetGoogle Scholar
  48. Nöhring WG, Curtin WA (2017) Dislocation cross-slip in fcc solid solution alloys. Acta Mater 128:135–148CrossRefGoogle Scholar
  49. Olmsted DL, Hector LG, Curtin WA, Clifton RJ (2005) Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model Simul Mater Sci Eng 105:371–388CrossRefADSGoogle Scholar
  50. Po G, Cui Y, Rivera D, Cereceda D, Swinburne TD, Marian J, Ghoniem N (2016) A phenomenological dislocation mobility law for BCC metals. Acta Mater 119:123–135CrossRefGoogle Scholar
  51. Queyreau S, Monnet G, Devincre B (2010) Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater 58(17):5586–5595CrossRefGoogle Scholar
  52. Rao SI, Parthasarathy TA, Dimiduk DM, Hazzledine PM (2004) Discrete dislocation simulations of precipitation hardening in superalloys. Philos Mag 84(30):3195–3215CrossRefADSGoogle Scholar
  53. Reed-Hill RE, Abbaschian R (1992) Physical metallurgy principles. PWS-Kent, BostonGoogle Scholar
  54. Rhee M, Stolken JS, Bulatov VV, Diaz de la Rubia T, Zbib HM, Hirth JP (2001) Dislocation stress fields for dynamic codes using anisotropic elasticity: methodology and analysis. Model Simul Mater Sci Eng A 309–310:288–293CrossRefGoogle Scholar
  55. Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296CrossRefGoogle Scholar
  56. Schwarz KW (2003) Local rules for approximating strong dislocation interactions in discrete dislocation dynamics. Model Simul Mater Sci Eng 11:609–625CrossRefADSGoogle Scholar
  57. Shin CS, Fivel MC, Verdier M, Oh KH (2003) Dislocation-impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis. Philos Mag 83(31–34):3691–3704CrossRefADSGoogle Scholar
  58. Sills RB (2016) Dislocation dynamics of face-centered cubic metals and alloys. PhD thesis, Stanford UniversityGoogle Scholar
  59. Sills RB, Cai W (2016) Solute drag on perfect and extended dislocations. Philos Mag 96:895–921CrossRefADSGoogle Scholar
  60. Sills RB, Cai W (2018) Free energy change of a dislocation due to a Cottrell atmosphere. Philos Mag 98(16):1491–1510CrossRefADSGoogle Scholar
  61. Sills RB, Kuykendall WP, Aghaei AA, Cai W (2016) Fundamentals of dislocation dynamics simulations, chap 2. In: Weinberger CR, Tucker GJ (eds) Multiscale materials modeling for nanomechanics. Springer, Cham, pp 53–87CrossRefGoogle Scholar
  62. Singh CV, Warner DH (2013) An atomistic-based hierarchical multiscale examination of age hardening in an Al-Cu alloy. Metal Mater Trans A: Phys Metal Mater Sci 44:2625–2644CrossRefADSGoogle Scholar
  63. Sofronis P, Birnbaum HK (1994) Mechanics of the hydrogen-dislocation-impurity interactions–I. Increasing shear modulus. J Mech Phys Solids 43(1):49–90CrossRefADSzbMATHGoogle Scholar
  64. Spearot DE, Sangid MD (2014) Insights on slip transmission at grain boundaries from atomistic simulations. Curr Opin Solid State Mater Sci 18:188–195CrossRefADSGoogle Scholar
  65. Takahashi A, Ghoniem N (2008) A computational method for dislocation-precipitate interaction. J Mech Phys Solids 56(4):1534–1553CrossRefADSzbMATHGoogle Scholar
  66. Tang M (2005) A lattice based screw-edge dislocation dynamics simulation of body center cubic single crystals, chap 2.22. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht (NL), pp 827–837CrossRefGoogle Scholar
  67. Van der Giessen V, Needleman A (1995) Discrete dislocation plasticity: a simple planar model. Model Simul Mater Sci Eng 3(5):689CrossRefADSGoogle Scholar
  68. Van der Giessen E, Needleman A (2005) Discrete dislocation plasticity, chap 3.4. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht (NL), pp 1115–1131CrossRefGoogle Scholar
  69. Varvenne C, Leyson GPM, Ghazisaeidi M, Curtin WA (2017) Solute strengthening in random alloys. Acta Mater 124:660–683CrossRefGoogle Scholar
  70. Ventelon L, Lüthi B, Clouet E, Proville L, Legrand B, Rodney D, Willaime F (2015) Dislocation core reconstruction induced by cargon segregation in BCC iron. Phys Rev B 91:220102_1–5Google Scholar
  71. Weinberger CR, Cai W (2007) Computing image stress in an elastic cylinder. J Mech Phys Solids 55(10):2027–2054CrossRefADSMathSciNetzbMATHGoogle Scholar
  72. Weinberger CR, Aubry S, Lee SW, Cai W (2009a) Dislocation dynamics simulations in a cylinder. In: Proceedings of the dislocations 2008 international conference. IOP conference series: materials science and engineering, Dislocations 2008, Hong KongGoogle Scholar
  73. Weinberger CR, Aubry S, Lee SW, Nix WD, Cai W (2009b) Modelling dislocations in a free-standing thin film. Model Simul Mater Sci Eng 17:075007–075034CrossRefADSGoogle Scholar
  74. Wen M, Fukuyama S, Yokogawa K (2007) Cross-slip process in FCC nickel with hydrogen in a stacking fault: an atomistic study using the embedded-atom method. Phys Rev B 75:14410_1–4Google Scholar
  75. Weygand D, Friedman LH, Van der Giessen E, Needleman A (2002) Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics. Model Simul Mater Sci Eng 10(4):437–468CrossRefADSGoogle Scholar
  76. Wu Z, Curtin W (2015) The origins of high hardening and low ductility in magnesium. Nature 526:62–67CrossRefADSGoogle Scholar
  77. Yin J, Barnett DM, Cai W (2010) Efficient computation of forces on dislocation segments in anisotropic elasticity. Model Simul Mater Sci Eng 18:045013CrossRefADSGoogle Scholar
  78. Zbib HM, Khraishi TA (2005) Dislocation dynamics, chap 3.3. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht/London, pp 1097–1114CrossRefGoogle Scholar
  79. Zhou C, LeSar R (2012) Dislocation dynamics simulations of plasticiy in polycrystalline thin films. Int J Plast 30–31:185–201CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  1. 1.Sandia National LaboratoriesLivermoreUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations