Advertisement

Correlations and Effective Interactions from First Principles Using Quantum Monte Carlo

  • Lucas K. WagnerEmail author
Reference work entry
  • 35 Downloads

Abstract

Quantum Monte Carlo (QMC) comprises a set of techniques that use random numbers to address quantum mechanical problems. They are some of the most accurate techniques that can address large systems. This chapter gives the basics of QMC techniques on first principles models of materials.

Notes

Acknowledgments

This work was supported in part by the Simons collaboration on the many-electron problem. Thanks to Kittithat Kronchon and Kiel Williams for careful reading of the manuscript.

References

  1. Bajdich M, Mitas L, Drobný G, Wagner LK, Schmidt KE (2006) Pfaffian pairing wave functions in electronic-structure quantum Monte Carlo simulations. Phys Rev Lett 96(13):130201. http://link.aps.org/doi/10.1103/PhysRevLett.96.130201 ADSCrossRefGoogle Scholar
  2. Bennett MC, Melton CA, Annaberdiyev A, Wang G, Shulenburger L, Mitas L (2017) A new generation of effective core potentials for correlated calculations. J Chem Phys 147(22):224106. http://aip.scitation.org/doi/abs/10.1063/1.4995643 ADSCrossRefGoogle Scholar
  3. Bijl A (1940) The lowest wave function of the symmetrical many particles system. Physica 7(9):869–886. https://doi.org/10.1016/0031-8914(40)90166-5, http://www.sciencedirect.com/science/article/pii/0031891440901665
  4. Burkatzki M, Filippi C, Dolg M (2007) Energy-consistent pseudopotentials for quantum Monte Carlo calculations. J Chem Phys 126(23):234105. https://doi.org/10.1063/1.2741534 ADSCrossRefGoogle Scholar
  5. Burkatzki M, Filippi C, Dolg M (2008) Energy-consistent small-core pseudopotentials for 3D-transition metals adapted to quantum Monte Carlo calculations. J Chem Phys 129(16):164115. https://doi.org/10.1063/1.2987872 ADSCrossRefGoogle Scholar
  6. Casula M (2006) Beyond the locality approximation in the standard diffusion Monte Carlo method. Phys Rev B 74(16):161102(R). http://link.aps.org/doi/10.1103/PhysRevB.74.161102
  7. Casula M, Moroni S, Sorella S, Filippi C (2010) Size-consistent variational approaches to nonlocal pseudopotentials: standard and lattice regularized diffusion Monte Carlo methods revisited. J Chem Phys 132(15):154113. http://scitation.aip.org/content/aip/journal/jcp/132/15/10.1063/1.3380831 ADSCrossRefGoogle Scholar
  8. Changlani HJ, Kinder JM, Umrigar CJ, Chan GKL (2009) Approximating strongly correlated wave functions with correlator product states. Phys Rev B 80(24):245116. http://link.aps.org/doi/10.1103/PhysRevB.80.245116 ADSCrossRefGoogle Scholar
  9. Changlani HJ, Zheng H, Wagner LK (2015) Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions. J Chem Phys 143(10):102814. http://scitation.aip.org/content/aip/journal/jcp/143/10/10.1063/1.4927664 ADSCrossRefGoogle Scholar
  10. Chiesa S, Ceperley D, Martin R, Holzmann M (2006) Finite-size error in many-body simulations with long-range interactions. Phys Rev Lett 97(7):076404. http://link.aps.org/doi/10.1103/PhysRevLett.97.076404 ADSCrossRefGoogle Scholar
  11. Dingle RB (1949) LI. The zero-point energy of a system of particles. Lond Edinb Dublin Philos Mag J Sci 40(304):573–578. https://doi.org/10.1080/14786444908521743 CrossRefGoogle Scholar
  12. Doblhoff-Dier K, Meyer J, Hoggan PE, Kroes GJ, Wagner LK (2016) Diffusion Monte Carlo for accurate dissociation energies of 3D transition metal containing molecules. J Chem Theory Comput 12(6):2583–2597. http://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00160 CrossRefGoogle Scholar
  13. Drummond N, Needs R, Sorouri A, Foulkes W (2008) Finite-size errors in continuum quantum Monte Carlo calculations. Phys Rev B 78(12):125106. http://link.aps.org/doi/10.1103/PhysRevB.78.125106 ADSCrossRefGoogle Scholar
  14. Feynman RP, Cohen M (1956) Energy spectrum of the excitations in liquid helium. Phys Rev 102(5):1189–1204. http://link.aps.org/doi/10.1103/PhysRev.102.1189 ADSCrossRefGoogle Scholar
  15. Filippi C, Assaraf R, Moroni S (2016) Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo. J Chem Phys 144(19):194105. http://scitation.aip.org/content/aip/journal/jcp/144/19/10.1063/1.4948778 ADSCrossRefGoogle Scholar
  16. Holzmann M, Ceperley DM, Pierleoni C, Esler K (2003) Backflow correlations for the electron gas and metallic hydrogen. Phys Rev E 68(4):046707. http://link.aps.org/doi/10.1103/PhysRevE.68.046707 ADSCrossRefGoogle Scholar
  17. Jastrow R (1955) Many-body problem with strong forces. Phys Rev 98(5):1479–1484. https://link.aps.org/doi/10.1103/PhysRev.98.1479 ADSCrossRefGoogle Scholar
  18. Kolodrubetz MH, Spencer JS, Clark BK, Foulkes WM (2013) The effect of quantization on the full configuration interaction quantum Monte Carlo sign problem. J Chem Phys 138(2):024110. http://aip.scitation.org/doi/abs/10.1063/1.4773819 ADSCrossRefGoogle Scholar
  19. Kwon Y, Ceperley DM, Martin RM (1993) Effects of three-body and backflow correlations in the two-dimensional electron gas. Phys Rev B 48(16):12037. http://link.aps.org.libproxy.mit.edu/doi/10.1103/PhysRevB.48.12037 ADSCrossRefGoogle Scholar
  20. López Ríos P, Ma A, Drummond ND, Towler MD, Needs RJ (2006) Inhomogeneous backflow transformations in quantum Monte Carlo calculations. Phys Rev E 74(6):066701. http://link.aps.org/doi/10.1103/PhysRevE.74.066701 ADSCrossRefGoogle Scholar
  21. Melton CA, Zhu M, Guo S, Ambrosetti A, Pederiva F, Mitas L (2016) Spin-orbit interactions in electronic structure quantum Monte Carlo methods. Phys Rev A 93(4):042502. http://link.aps.org/doi/10.1103/PhysRevA.93.042502 ADSCrossRefGoogle Scholar
  22. Neuscamman E (2012) Size consistency error in the antisymmetric geminal power wave function can be completely removed. Phys Rev Lett 109(20):203001. http://link.aps.org/doi/10.1103/PhysRevLett.109.203001 ADSCrossRefGoogle Scholar
  23. Saritas K, Mueller T, Wagner L, Grossman JC (2017) Investigation of a quantum Monte Carlo protocol to achieve high accuracy and high-throughput materials formation energies. J Chem Theory Comput 13(5):1943–1951.  https://doi.org/10.1021/acs.jctc.6b01179 CrossRefGoogle Scholar
  24. Suzuki M (1976) Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Commun Math Phys 51(2):183–190. https://link.springer.com/article/10.1007/BF01609348 ADSMathSciNetCrossRefGoogle Scholar
  25. Taddei M, Ruggeri M, Moroni S, Holzmann M (2015) Iterative backflow renormalization procedure for many-body ground-state wave functions of strongly interacting normal Fermi liquids. Phys Rev B 91(11):115106. https://link.aps.org/doi/10.1103/PhysRevB.91.115106 ADSCrossRefGoogle Scholar
  26. Toulouse J, Umrigar CJ (2008) Full optimization of Jastrow–Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules. J Chem Phys 128(17):174101ADSCrossRefGoogle Scholar
  27. Trail JR, Needs RJ (2013) Pseudopotentials for correlated electron systems. J Chem Phys 139(1):014101. http://aip.scitation.org/doi/10.1063/1.4811651 ADSCrossRefGoogle Scholar
  28. Trotter HF (1959) On the product of semi-groups of operators. Proc Am Math Soc 10(4):545–551. http://www.jstor.org/stable/2033649 MathSciNetCrossRefGoogle Scholar
  29. Umrigar CJ (2015) Observations on variational and projector Monte Carlo methods. J Chem Phys 143(16):164105ADSCrossRefGoogle Scholar
  30. Umrigar CJ, Nightingale MP, Runge KJ (1993) A diffusion Monte Carlo algorithm with very small time-step errors. J Chem Phys 99(4):2865–2890. https://doi.org/10.1063/1.465195 ADSCrossRefGoogle Scholar
  31. Umrigar CJ, Toulouse J, Filippi C, Sorella S, Hennig RG (2007) Alleviation of the Fermion-Sign problem by optimization of many-body wave functions. Phys Rev Lett 98(11):110201. http://link.aps.org/doi/10.1103/PhysRevLett.98.110201 ADSCrossRefGoogle Scholar
  32. Wagner L, Mitas L (2003) A quantum Monte Carlo study of electron correlation in transition metal oxygen molecules. Chem Phys Lett 370(3–4):412–417. https://doi.org/10.1016/S0009-2614(03)00128-3, http://www.sciencedirect.com/science/article/pii/S0009261403001283
  33. Williams KT, Wagner LK (2016) Using local operator fluctuations to identify wave function improvements. Phys Rev E 94(1):013303. http://link.aps.org/doi/10.1103/PhysRevE.94.013303 ADSCrossRefGoogle Scholar
  34. Wouters S, Verstichel B, Van Neck D, Chan GKL (2014) Projector quantum Monte Carlo with matrix product states. Phys Rev B 90(4):045104. https://link.aps.org/doi/10.1103/PhysRevB.90.045104 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations