Advertisement

Non-equilibrium Dynamical Mean-Field Theory

  • Martin EcksteinEmail author
Reference work entry
  • 9 Downloads

Abstract

Intense and ultrashort light pulses allow to investigate new states of matter in complex materials under non-equilibrium conditions. The formulation of dynamical mean-field theory (DMFT) using Keldysh Green’s functions provides a framework to calculate the electronic structure of correlated materials out of equilibrium. The approach has contributed insight into a wide range of topics, including photo-induced processes in Mott insulators, non-equilibrium steady states in driven materials, and the fundamental question how isolated quantum systems thermalize. In this chapter we outline the theoretical foundations of non-equilibrium DMFT, present some of the major results so far, and briefly discuss future directions, which are needed in order to develop a framework in which material properties out of equilibrium can be obtained from first principles.

References

  1. Amaricci A, Weber C, Capone M, Kotliar G (2012) Approach to a stationary state in a driven Hubbard model coupled to a thermostat. Phys Rev B 86:085110CrossRefADSGoogle Scholar
  2. Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T, Werner P (2014) Nonequilibrium dynamical mean-field theory and its applications. Rev Mod Phys 86:779CrossRefADSGoogle Scholar
  3. Arrigoni E, Knap M, von der Linden W (2013) Nonequilibrium dynamical mean-field theory: an auxiliary quantum master equation approach. Phys Rev Lett 110:086403CrossRefADSGoogle Scholar
  4. Balzer K, Wolf FA, McCulloch I, Werner P, Eckstein M (2015) Nonthermal melting of Néel order in the Hubbard Model. Phys Rev X 5:031039Google Scholar
  5. Bányai L, Vu QT, Mieck B, Haug H (1998) Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering. Phys Rev Lett 81:882CrossRefADSGoogle Scholar
  6. Baym G, Kadanoff LP (1961) Conservation laws and correlation functions. Phys Rev 124:287CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. Biermann S, Aryasetiawan F, Georges A (2003) First-principles approach to the electronic structure of strongly correlated systems: combining the GW approximation and dynamical mean-field theory. Phys Rev Lett 90:086402CrossRefADSGoogle Scholar
  8. Bonitz M (ed) (2000) Progress in nonequilibrium Green’s functions. World Scientific, SingaporezbMATHGoogle Scholar
  9. Brandt U, Mielsch C (1991) Free energy of the Falicov-Kimball model in large dimensions. Z Phys B 82:37CrossRefADSGoogle Scholar
  10. Brunner H, van der Houwen PJ (1986) The numerical solution of Volterra equations. Elsevier Science Ltd ISBN-10: 0444700730Google Scholar
  11. Bukov M, D’Alessio L, Polkovnikov A (2015) Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv Phys 64(2): 139–229CrossRefADSGoogle Scholar
  12. Cohen G, Gull E, Reichman D, Millis AJ (2015) Taming the dynamical sign problem in real-time evolution of quantum many-body problems. Phys Rev Lett 115:266802CrossRefADSGoogle Scholar
  13. Dal Conte S et al (2015) Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates. Nature Phys 11:421CrossRefADSGoogle Scholar
  14. Deng X, Mravlje J, Žitko R, Ferrero M, Kotliar G, Georges A (2013) How bad metals turn good: spectroscopic signatures of resilient quasiparticles. Phys Rev Lett 110:086401CrossRefADSGoogle Scholar
  15. Eckstein M, Kollar M (2008) Measuring correlated electron dynamics with time-resolved photoemission spectroscopy. Phys Rev B 78:245113CrossRefADSGoogle Scholar
  16. Eckstein M, Werner P (2010) Nonequilibrium dynamical mean-field calculations based on the noncrossing approximation and its generalizations. Phys Rev B 82:115115CrossRefADSGoogle Scholar
  17. Eckstein M, Werner P (2011) Thermalization of a pump-excited Mott insulator. Phys Rev B 84:035122CrossRefADSGoogle Scholar
  18. Eckstein M, Werner P (2013a) Nonequilibrium dynamical mean-field simulation of inhomogeneous systems. Phys Rev B 88:075135CrossRefADSGoogle Scholar
  19. Eckstein M, Werner P (2013b) Photo-induced states in a Mott insulator. Phys Rev Lett 110:126401CrossRefADSGoogle Scholar
  20. Eckstein M, Werner P (2016) Ultra-fast photo-carrier relaxation in Mott insulators with short-range spin correlations. Sci Rep 6:21235CrossRefADSGoogle Scholar
  21. Eckstein M, Kollar M, Werner P (2009) Thermalization after an interaction quench in the Hubbard model. Phys Rev Lett 103:056403CrossRefADSGoogle Scholar
  22. Eckstein M, Kollar M, Werner P (2010a) Interaction quench in the Hubbard model: relaxation of the spectral function and the optical conductivity. Phys Rev B 81:115131CrossRefADSGoogle Scholar
  23. Eckstein M, Oka T, Werner P (2010b) Dielectric breakdown of Mott insulators in dynamical mean-field theory. Phys Rev Lett 05:146404CrossRefADSGoogle Scholar
  24. Fausti D, Tobey RI, Dean N, Kaiser S, Dienst A, Hoffmann MC, Pyon S, Takayama T, Takagi H, Cavalleri A (2011) Light-induced superconductivity in a stripe-ordered cuprate. Science 331(6):189–191CrossRefADSGoogle Scholar
  25. Freericks JK (2008) Quenching bloch oscillations in a strongly correlated material: nonequilibrium dynamical mean-field theory. Phys Rev B 77:075109CrossRefADSGoogle Scholar
  26. Freericks JK, Turkowski VM, Zlatić V (2006) Nonequilibrium dynamical mean-field theory. Phys Rev Lett 97:266408CrossRefADSGoogle Scholar
  27. Freericks JK, Krishnamurthy HK, Pruschke T (2009) Theoretical description of time-resolved photoemission spectroscopy: application to pump-probe experiments. Phys Rev Lett 102:136401CrossRefADSGoogle Scholar
  28. Georges A, Kotliar G (1992) Hubbard model in infinite dimensions. Phys Rev B 45:6479CrossRefADSGoogle Scholar
  29. Georges A, Kotliar G, Krauth W, Rozenberg M (1996) Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev Mod Phys 68:13CrossRefADSMathSciNetGoogle Scholar
  30. Giannetti C, Capone M, Fausti D, Fabrizio M, Parmigiani F, Mihailovic D (2016) Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv Phys 65(2):58–238CrossRefADSGoogle Scholar
  31. Goldman N, Dalibard J (2014) Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields. Phys Rev X 4(3):031027Google Scholar
  32. Golež D, Bonča J, Mierzejewski M, Vidmar L (2014) Mechanism of ultrafast relaxation of a photo-carrier in antiferromagnetic spin background. Phys Rev B 89:165118CrossRefADSGoogle Scholar
  33. Golež D, Eckstein M, Werner P (2015) Dynamics of screening in photodoped Mott insulators. Phys Rev B 92:195123CrossRefADSGoogle Scholar
  34. Golež D, Werner P, Eckstein M (2016) Photo-induced gap closure in an excitonic insulator. Phys Rev B 94:035121CrossRefADSGoogle Scholar
  35. Golez D, Boehnke L, Strand H, Eckstein M, Werner Ph (2017) Nonequilibrium GW+EDMFT: antiscreening and inverted populations from nonlocal correlations. Phys Rev Lett 118:246402CrossRefADSGoogle Scholar
  36. Gramsch C, Balzer K, Eckstein M, Kollar M (2013) Hamiltonian-based impurity solver for nonequilibrium dynamical mean-field theory. Phys Rev B 88:235106CrossRefADSGoogle Scholar
  37. Gull E, Millis AJ, Lichtenstein A, Rubtsov A, Troyer M, Werner P (2011) Continuous-time Monte Carlo methods for quantum impurity models. Rev Mod Phys 83:349CrossRefADSGoogle Scholar
  38. Haug H, Jauho A (2008) Quantum kinetics in transport and optics of semiconductors. Springer, BerlinGoogle Scholar
  39. Higuchi T, Heide C, Ullmann K, Weber H, Hommelhoff P (2017) Light-field-driven currents in graphene. Nature 550:224–228CrossRefADSGoogle Scholar
  40. Ichikawa H et al (2011) Transient photoinduced ‘hidden’ phase in a manganite. Nat Mater 10(2):101–105CrossRefADSGoogle Scholar
  41. Imada M, Fujimori A, Tokura Y (1998) Metal insulator transitions. Rev Mod Phys 70:1039CrossRefADSGoogle Scholar
  42. Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T (2014) Experimental realization of the topological Haldane model with ultracold fermions. Nature 515:237–240CrossRefADSGoogle Scholar
  43. Joura A, Freericks J, Pruschke T (2008) Steady-state nonequilibrium density of states of driven strongly correlated lattice models in infinite dimensions. Phys Rev Lett 101:196401CrossRefADSGoogle Scholar
  44. Kamenev A (2011) Field theory of non-equilibrium systems. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  45. Kemper A, Sentef M, Moritz B, Devereaux T, Freericks JK (2017) Review of the theoretical description of time-resolved angle-resolved photoemission spectroscopy in electron-phonon mediated superconductors. Annalen der Physik 529:1600235CrossRefADSGoogle Scholar
  46. Knap M, Babadi M, Refael G, Martin I, Demler E (2016) Dynamical cooper pairing in nonequilibrium electron-phonon systems. Phys Rev B 94:214504CrossRefADSGoogle Scholar
  47. Kollar M, Wolf FA, Eckstein M (2011) Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems. Phys Rev B 84(5):054304CrossRefADSGoogle Scholar
  48. Lenarčič Z, Prelovšek P (2014) Charge recombination in undoped cuprates. Phys Rev B 90:235136CrossRefADSGoogle Scholar
  49. Li J, Aron C, Kotliar G, Han J (2015) Electric-field-driven resistive switching in the dissipative Hubbard model. Phys Rev Lett 114:226403CrossRefADSGoogle Scholar
  50. Ligges M, Avigo I, Golež D, Strand H, Stojchevska L, Kalläne M, Zhou P, Rossnagel K, Eckstein M, Werner P, Bovensiepen U (2018) Ultrafast doublon dynamics in photo-excited 1T-TaS2. Phys. Rev. Lett. 120:166401. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.166401 CrossRefADSGoogle Scholar
  51. Lipavský P, Špička V, Velický B (1986) Generalized Kadanoff-Baym ansatz for deriving quantum transport equations. Phys Rev B 34:6933CrossRefADSGoogle Scholar
  52. Mahan GD (2000) Many-particle physics. Kluver Academic, New YorkCrossRefGoogle Scholar
  53. Mentink JH, Eckstein M (2014) Ultrafast quenching of the exchange interaction in a Mott insulator. Phys Rev Lett 113:057201CrossRefADSGoogle Scholar
  54. Mentink J, Balzer K, Eckstein M (2015) Ultrafast and reversible control of the exchange interaction in Mott insulators. Nature Commun 6:6708CrossRefADSGoogle Scholar
  55. Metzner W, Vollhardt D (1989) Correlated lattice fermions in d =  dimensions. Phys Rev Lett 62:324Google Scholar
  56. Mitrano et al (2014) Pressure-dependent relaxation in the photoexcited Mott insulator ET-F2TCNQ: influence of hopping and correlations on quasiparticle recombination rates. Phys Rev Lett 112:117801Google Scholar
  57. Moeckel M, Kehrein S (2008) Interaction quench in the Hubbard model. Phys Rev Lett 100(17):175702CrossRefADSGoogle Scholar
  58. Mühlbacher L, Rabani E (2008) Real-time path integral approach to nonequilibrium many-body quantum systems. Phys Rev Lett 100:176403CrossRefADSGoogle Scholar
  59. Müller-Hartmann E (1989) Correlated fermions on a lattice in high dimensions. Z Phys B 74:507CrossRefADSGoogle Scholar
  60. Murakami Y, Tsuji N, Eckstein M, Werner P (2017) Nonequilibrium steady states and transient dynamics of superconductors under phonon driving. Phys Rev B 96:045125CrossRefADSGoogle Scholar
  61. Okamoto H, Miyagoe T, Kobayashi K, Uemura H, Nishioka H, Matsuzaki H, Sawa A, Tokura Y (2010) Ultrafast charge dynamics in photoexcited Nd2CuO4 and La2CuO4 cuprate compounds investigated by femtosecond absorption spectroscopy. Phys Rev B 82:060513(R)Google Scholar
  62. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601CrossRefADSGoogle Scholar
  63. Pavarini E, Koch E, Vollhardt D, Lichtenstein A (eds) (2014) DMFT at 25: infinite dimensions. Verlag des Forschungszentrum Jülich, JülichGoogle Scholar
  64. Polkovnikov A, Sengupta K, Silva A, Vengalattore M (2011) Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev Mod Phys 83(3):863–883CrossRefADSGoogle Scholar
  65. Rini M, Tobey R, Dean N, Itatani J, Tomioka Y, Tokura Y, Schoenlein R, Cavalleri A (2007) Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449(7158):72–74CrossRefADSGoogle Scholar
  66. Sayyad S, Eckstein M (2016) Slow down of the electronic relaxation close to the Mott transition. Phys Rev Lett 117:096403CrossRefADSGoogle Scholar
  67. Schmidt P, Monien H (2002) Nonequilibrium dynamical mean-field theory of a strongly correlated system. Available via arXiv:cond-mat/0202046. Accessed 1 Jan 2017Google Scholar
  68. Sciolla B, Biroli G (2013) Quantum quenches, dynamical transitions, and off-equilibrium quantum criticality. Phys Rev B 88:201110(R)Google Scholar
  69. Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S, Mihailovic D (2014) Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344(6180):177–180CrossRefADSGoogle Scholar
  70. Strand H, Eckstein M, Werner P (2015) Nonequilibrium dynamical mean-field theory for bosonic lattice models. Phys Rev X 5:011038Google Scholar
  71. Strand H, Golež D, Eckstein M, Werner P (2017) Hund’s coupling driven photo-carrier relaxation in the two-band Mott insulator. Phys Rev B 96:165104CrossRefADSGoogle Scholar
  72. Strohmaier N, Greif D, Jördens R, Tarruell L, Moritz H, Esslinger T, Sensarma R, Pekker, Altman E, Demler E (2010) Observation of elastic doublon decay in the Fermi-Hubbard model. Phys Rev Lett 104:080401CrossRefADSGoogle Scholar
  73. Tsuji N, Oka T, Aoki H (2008) Correlated electron systems periodically driven out of equilibrium: Floquet+DMFT formalism. Phys Rev B 78:235124CrossRefADSGoogle Scholar
  74. Tsuji N, Oka T, Werner P, Aoki P (2011) Dynamical band flipping in fermionic lattice systems: an ac-field-driven change of the interaction from repulsive to attractive. Phys Rev Lett 106:236401CrossRefADSGoogle Scholar
  75. Tsuji N, Eckstein M, Werner P (2013) Nonthermal antiferromagnetic order and nonequilibrium criticality in the Hubbard model. Phys Rev Lett 110(13):136404CrossRefADSGoogle Scholar
  76. Werner P, Eckstein M (2013) Phonon-enhanced relaxation and excitation in the Holstein-Hubbard model Phys Rev B 88:165108Google Scholar
  77. Werner P, Oka T, Millis AJ (2009) Diagrammatic Monte Carlo simulation of non-equilibrium systems. Phys Rev B 79:035320CrossRefADSGoogle Scholar
  78. Werner P, Tsuji N, Eckstein M (2012) Nonthermal symmetry-broken states in the strongly interacting Hubbard model. Phys Rev B 86:205101CrossRefADSGoogle Scholar
  79. Werner P, Held K, Eckstein M (2014) Role of impact ionization in the thermalization of photo-excited Mott insulators. Phys Rev B 90:235102CrossRefADSGoogle Scholar
  80. Wolf FA, McCulloch I, Schollwöck U (2014) Solving nonequilibrium dynamical mean-field theory using matrix product states. Phys Rev B 90:235131CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
  2. 2.Theory Department: Theory of Correlated Systems out of EquilibriumMax-Planck-Institut f. Struktur u. Dynamik der MaterieHamburgGermany

Personalised recommendations