Plastic Biodegradation: Challenges and Opportunities

  • Nick Wierckx
  • Tanja Narancic
  • Christian Eberlein
  • Ren Wei
  • Oliver Drzyzga
  • Audrey Magnin
  • Hendrik Ballerstedt
  • Shane T. Kenny
  • Eric Pollet
  • Luc Avérous
  • Kevin E. O’Connor
  • Wolfgang Zimmermann
  • Hermann J. Heipieper
  • Auxiliadora Prieto
  • José Jiménez
  • Lars M. Blank
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Plastics are extremely useful materials that have transformed our society in a myriad of ways. However, the widespread use of these materials has led to a staggering amount of plastic pollution in man-made and natural environments. The biodegradation of plastics is a key factor to reduce the impact of this plastic pollution. On the one hand, organisms are emerging that can degrade relatively recalcitrant plastics. On the other hand, biodegradable plastics are being developed that are intrinsically more amenable to microbial attack. In this chapter we provide an overview of the natural fates of these two types of plastics, the molecular bonds that occur in them, and the enzymatic activities associated with their degradation. Finally, an outlook is provided for the biotechnological utilization of plastics waste as a substrate, either using these enzymes or through thermochemical pretreatment.

Notes

Acknowledgement

The authors have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 633962 for the project P4SB.

References

  1. Abe M, Kobayashi K, Honma N, Nakasaki K (2010) Microbial degradation of poly(butylene succinate) by Fusarium solani in soil environments. Polym Degrad Stab 95:138–143CrossRefGoogle Scholar
  2. ACC, APR (2016) The 2015 US national postconsumer plastics bottle recycling rate report American Chemical Council & Assoc. Plastic Recyclers. https://plastics.americanchemistry.com/2015-United-States-National-Postconsumer-Plastic-Bottle-Recycling-Report.pdf. Accessed 09 Oct 2017
  3. Agarwal M, Koelling KW, Chalmers JJ (1998) Characterization of the degradation of polylactic acid polymer in a solid substrate environment. Biotechnol Prog 14:517–526PubMedCrossRefGoogle Scholar
  4. Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T (1998) Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl Environ Microbiol 64:62–67PubMedPubMedCentralGoogle Scholar
  5. Akutsu-Shigeno Y, Adachi Y, Yamada C, Toyoshima K, Nomura N, Uchiyama H, Nakajima-Kambe T (2006) Isolation of a bacterium that degrades urethane compounds and characterization of its urethane hydrolase. Appl Microbiol Biotechnol 70:422–429PubMedCrossRefGoogle Scholar
  6. Albertsson AC, Barenstedt C, Karlsson S, Lindberg T (1995) Degradation product pattern and morphology changes as means to differentiate abiotically and biotically aged degradable polyethylene. Polymer 36:3075–3083CrossRefGoogle Scholar
  7. Ali MI, Ahmed S, Robson G, Javed I, Ali N, Atiq N, Hameed A (2014) Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J Basic Microbiol 54:18–27PubMedCrossRefGoogle Scholar
  8. Álvarez-Barragán J, Domínguez-Malfavón L, Vargas-Suárez M, González-Hernández R, Aguilar-Osorio G, Loza-Tavera H (2016) Biodegradative activity of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Appl Environ Microbiol 82:5225.  https://doi.org/10.1128/aem.01344-16CrossRefPubMedPubMedCentralGoogle Scholar
  9. Araujo R, Silva C, O’Neill A, Micaelo N, Guebitz G, Soares CM, Casal M, Cavaco-Paulo A (2007) Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. J Biotechnol 128:849–857PubMedCrossRefGoogle Scholar
  10. Arena U (2012) Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32:625–639PubMedCrossRefGoogle Scholar
  11. Arkatkar A, Juwarkar AA, Bhaduri S, Uppara PV, Doble M (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad 64:530–536CrossRefGoogle Scholar
  12. Artham T, Sudhakar M, Venkatesan R, Nair CM, Murty KVGK, Doble M (2009) Biofouling and stability of synthetic polymers in sea water. Int Biodeterior Biodegrad 63:884–890CrossRefGoogle Scholar
  13. Babu RP, O'Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8.  https://doi.org/10.1186/2194-0517-2-8CrossRefPubMedPubMedCentralGoogle Scholar
  14. Baker PJ, Poultney C, Liu Z, Gross R, Montclare JK (2012) Identification and comparison of cutinases for synthetic polyester degradation. Appl Microbiol Biotechnol 93:229–240PubMedCrossRefGoogle Scholar
  15. Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Kannan VR (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211PubMedGoogle Scholar
  16. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B 364:1985–1998CrossRefGoogle Scholar
  17. Barth M, Oeser T, Wei R, Then J, Schmidt J, Zimmermann W (2015a) Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca. Biochem Eng J 93:222–228CrossRefGoogle Scholar
  18. Barth M, Wei R, Oeser T, Then J, Schmidt J, Wohlgemuth F, Zimmermann W (2015b) Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor. J Membr Sci 494:182–187CrossRefGoogle Scholar
  19. Barth M, Honak A, Oeser T, Wei R, Belisario-Ferrari MR, Then J, Schmidt J, Zimmermann W (2016) A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J 11:1082–1087PubMedCrossRefGoogle Scholar
  20. BASF SE (2017) Biodegradable and compostable packaging solutions with ecoflex®. BASF. http://www.plasticsportal.eu/ecoflex. Accessed 11 Oct 2017
  21. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654CrossRefGoogle Scholar
  22. Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58PubMedCrossRefGoogle Scholar
  23. Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2015) Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics. J Anal Appl Pyrolysis 111:55–63CrossRefGoogle Scholar
  24. Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34:1639–1651PubMedCrossRefGoogle Scholar
  25. Billig S, Oeser T, Birkemeyer C, Zimmermann W (2010) Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3. Appl Microbiol Biotechnol 87:1753–1764PubMedCrossRefGoogle Scholar
  26. Bombelli P, Howe CJ, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:R292–R293PubMedCrossRefGoogle Scholar
  27. Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP, Christiansen L, Huge-Jensen B, Norskov L et al (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–770PubMedCrossRefGoogle Scholar
  28. Byun Y, Cho M, Hwang S-M, Chung J (2012) Thermal plasma gasification of municipal solid waste (MSW). In: Yun Y (ed) Gasification for practical applications. InTech, Rijeka, pp 183–210Google Scholar
  29. Cacciari I, Quatrini P, Zirletta G, Mincione E, Vinciguerra V, Lupattelli P, Giovannozzi Sermanni G (1993) Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Appl Environ Microbiol 59:3695–3700PubMedPubMedCentralGoogle Scholar
  30. Calabia BP, Tokiwa Y (2006) A novel PHB depolymerase from a thermophilic Streptomyces sp. Biotechnol Lett 28:383–388PubMedCrossRefGoogle Scholar
  31. Carniel A, Valoni É, Nicomedes J, Gomes AC, Castro AM (2017) Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem 59:84–90CrossRefGoogle Scholar
  32. Cerrone F, Davis R, Kenny ST, Woods T, O’Donovan A, Gupta VK, Tuohy M, Babu RP, O’Kiely P, O’Connor K (2015) Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. Bioresour Technol 191:45–52PubMedCrossRefGoogle Scholar
  33. Chen DR, Bei JZ, Wang SG (2000) Polycaprolactone microparticles and their biodegradation. Polym Degrad Stab 67:455–459CrossRefGoogle Scholar
  34. Chen S, Su L, Chen J, Wu J (2013) Cutinase: characteristics, preparation, and application. Biotechnol Adv 31:1754–1767PubMedCrossRefGoogle Scholar
  35. Choi D, Chipman DC, Bents SC, Brown RC (2010) A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl Biochem Biotechnol 160:1032–1046PubMedCrossRefGoogle Scholar
  36. Deguchi T, Kitaoka Y, Kakezawa M, Nishida T (1998) Purification and characterization of a nylon-degrading enzyme. Appl Environ Microbiol 64:1366–1371PubMedPubMedCentralGoogle Scholar
  37. Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852PubMedCrossRefGoogle Scholar
  38. Diender M, Stams AJM, Sousa DZ (2015) Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol 6:1275.  https://doi.org/10.3389/fmicb.2015.01275CrossRefPubMedPubMedCentralGoogle Scholar
  39. Do YS, Smeenk J, Broer KM, Kisting CJ, Brown R, Heindel TJ, Bobik TA, DiSpirito AA (2007) Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-beta-hydroxyalkanoate. Biotechnol Bioeng 97:279–286PubMedCrossRefGoogle Scholar
  40. Dris R, Imhof H, Sanchez W, Gasperi J, Galgani F, Tassin B, Laforsch C (2015) Beyond the ocean: contamination of freshwater ecosystems with (micro-)plastic particles. Environ Chem 12:539–550CrossRefGoogle Scholar
  41. Drzyzga O, Revelles O, Durante-Rodríguez G, Díaz E, García JL, Prieto A (2015) New challenges for syngas fermentation: towards production of biopolymers. J Chem Technol Biotechnol 90:1735–1751CrossRefGoogle Scholar
  42. Dürre P (2016) Butanol formation from gaseous substrates. FEMS Microbiol Lett 363.  https://doi.org/10.1093/femsle/fnw040
  43. Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72PubMedCrossRefGoogle Scholar
  44. Eberl A, Heumann S, Bruckner T, Araujo R, Cavaco-Paulo A, Kaufmann F, Kroutil W, Guebitz GM (2009) Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol 143:207–212PubMedCrossRefGoogle Scholar
  45. Ehara K, Iiyoshi Y, Tsutsumi Y, Nishida T (2000) Polyethylene degradation by manganese peroxidase in the absence of hydrogen peroxide. J Wood Sci 46:180–183CrossRefGoogle Scholar
  46. Ellen MacArthur Foundation, World Economic Forum, McKinsey & Company (2016) The new plastics economy: rethinking the future of plastics. Ellen MacARTHUR Foundation & World Economic Forum & McKinsey & Company. http://www.ellenmacarthurfoundation.org/publications. Accessed 09 Oct 2017
  47. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536PubMedCrossRefGoogle Scholar
  48. European Bioplastics (2016) Driving the evolution of plastics. European Bioplastics, Berlin. http://docs.european-bioplastics.org/2016/association/EUBP_image_brochure.pdf. Accessed 15 Oct 2017Google Scholar
  49. European Commission (2017) Strategy on plastics in a circular economy – roadmap. EC. http://ec.europa.eu/smart-regulation/roadmaps/docs/plan_2016_39_plastic_strategy_en.pdf. Accessed 15 Oct 2017
  50. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv Drug Deliv Rev 107:367–392PubMedCrossRefGoogle Scholar
  51. Fernandez Y, Arenillas A, Menendez JA (2011) Microwave heating applied to pyrolysis. In: Grundas S (ed) Advances in induction and microwave heating of mineral and organic materials. InTech, Rijcka, pp 723–752Google Scholar
  52. Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson JM, Courdavault JP, Pitteri S, Samuel G, Pichon G, Lemaire J, Delort AM (2010) Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stab 95:1011–1021CrossRefGoogle Scholar
  53. Friedrich J, Zalar P, Mohorcic M, Klun U, Krzan A (2007) Ability of fungi to degrade synthetic polymer nylon-6. Chemosphere 67:2089–2095PubMedCrossRefGoogle Scholar
  54. Fujisawa M, Hirai H, Nishida T (2001) Degradation of polyethylene and Nylon-66 by the laccase-mediator system. J Polym Environ 9:103–108CrossRefGoogle Scholar
  55. Galloway TS, Cole M, Lewis C (2017) Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol 1:0116.  https://doi.org/10.1038/s41559-017-0116CrossRefGoogle Scholar
  56. Gamerith C, Zartl B, Pellis A, Guillamot F, Marty A, Acero EH, Guebitz GM (2017) Enzymatic recovery of polyester building blocks from polymer blends. Process Biochem 59:58–64CrossRefGoogle Scholar
  57. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782.  https://doi.org/10.1126/sciadv.1700782CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104Google Scholar
  59. Glass NL, Schmoll M, Cate JH, Coradetti S (2013) Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol 67:477–498PubMedCrossRefGoogle Scholar
  60. Goff M, Ward PG, O’Connor KE (2007) Improvement of the conversion of polystyrene to polyhydroxyalkanoate through the manipulation of the microbial aspect of the process: a nitrogen feeding strategy for bacterial cells in a stirred tank reactor. J Biotechnol 132:283–286PubMedCrossRefGoogle Scholar
  61. Greene JP (2014) Sustainable plastics: environmental assessments of biobased, biodegradable, and recycled plastics. Wiley.  https://doi.org/10.1002/9781118899595CrossRefGoogle Scholar
  62. Gross C, Hamacher K, Schmitz K, Jager S (2017) Cleavage product accumulation decreases the activity of cutinase during PET hydrolysis. J Chem Inf Model 57:243–255PubMedCrossRefGoogle Scholar
  63. Guebitz GM, Cavaco-Paulo A (2008) Enzymes go big: surface hydrolysis and functionalization of synthetic polymers. Trends Biotechnol 26:32–38PubMedCrossRefGoogle Scholar
  64. Guzik MW, Kenny ST, Duane GF, Casey E, Woods T, Babu RP, Nikodinovic-Runic J, Murray M, O’Connor KE (2014) Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. Appl Microbiol Biotechnol 98:4223–4232PubMedCrossRefGoogle Scholar
  65. GVM (2016) Aufkommen und Verwertung von PET – Getränkeflaschen in Deutschland 2015. Gesellschaft für Verpackungsmarktforschung mbH, Mainz. http://www.kunststoffverpackungen.de/show.php?ID=5961&PHPSESSID=apceu6k6r1irm4q7qff60ofp50. Accessed 15 Oct 2017
  66. Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100PubMedCrossRefGoogle Scholar
  67. Hajighasemi M, Nocek BP, Tchigvintsev A, Brown G, Flick R, Xu X, Cui H, Hai T, Joachimiak A, Golyshin PN, Savchenko A, Edwards EA, Yakunin AF (2016) Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases. Biomacromolecules 17:2027–2039PubMedCrossRefGoogle Scholar
  68. Hakkarainen M, Albertsson AC (2004) Environmental degradation of polyethylene. Adv Polym Sci 169:177–199CrossRefGoogle Scholar
  69. Herzog K, Müller RJ, Deckwer WD (2006) Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases. Polym Degrad Stab 91:2486–2498CrossRefGoogle Scholar
  70. Ho KLG, Pometto AL, Gadea-Rivas A, Briceno JA, Rojas A (1999) Degradation of polylactic acid (PLA) plastic in Costa Rican soil and Iowa State University compost rows. J Environ Polym Degrad 7:173–177CrossRefGoogle Scholar
  71. Horsman PV (1982) The amount of garbage pollution from merchant ships. Mar Pollut Bull 13:167–169CrossRefGoogle Scholar
  72. Hu X, Gao Z, Wang Z, Su T, Yang L, Li P (2016) Enzymatic degradation of poly(butylene succinate) by cutinase cloned from Fusarium solani. Polym Degrad Stab 134:211–219CrossRefGoogle Scholar
  73. Iiyoshi Y, Tsutsumi Y, Nishida T (1998) Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 44:222.  https://doi.org/10.1007/bf00521967CrossRefGoogle Scholar
  74. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771PubMedCrossRefGoogle Scholar
  75. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432PubMedCrossRefGoogle Scholar
  76. Jeyakumar D, Chirsteen J, Doble M (2013) Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour Technol 148:78–85PubMedCrossRefGoogle Scholar
  77. Kaplan DL, Hartenstein R, Sutter J (1979) Biodegradation of polystyrene, poly(metnyl methacrylate), and phenol formaldehyde. Appl Environ Microbiol 38:551–553PubMedPubMedCentralGoogle Scholar
  78. Kawai F (2002) Microbial degradation of polyethers. Appl Microbiol Biotechnol 58:30–38PubMedCrossRefGoogle Scholar
  79. Kawai F (2010) Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases. In: Green polymer chemistry: biocatalysis and biomaterials. American Chemical Society, Washington, DC, pp 405–414CrossRefGoogle Scholar
  80. Kawai F, Oda M, Tamashiro T, Waku T, Tanaka N, Yamamoto M, Mizushima H, Miyakawa T, Tanokura M (2014) A novel Ca2+−activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 98:10053–10064PubMedCrossRefGoogle Scholar
  81. Kenny ST, Runic JN, Kaminsky W, Woods T, Babu RP, Keely CM, Blau W, O’Connor KE (2008) Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ Sci Technol 42:7696–7701PubMedCrossRefGoogle Scholar
  82. Kenny ST, Runic JN, Kaminsky W, Woods T, Babu RP, O’Connor KE (2012) Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl Microbiol Biotechnol 95:623–633PubMedCrossRefGoogle Scholar
  83. Kim DY, Kim HW, Chung MG, Rhee YH (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45:87–97PubMedGoogle Scholar
  84. Klemm D, Schmauder H-P, Heinze T (2002) Cellulose. In: Vandamme E, De Beats S, Steinbüchel A (eds) Biopolymers. Wiley-VCH, Weinheim, pp 290–292Google Scholar
  85. Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107:13087–13092PubMedPubMedCentralCrossRefGoogle Scholar
  86. Köpke M, Mihalcea C, Bromley JC, Simpson SD (2011a) Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:320–325PubMedCrossRefGoogle Scholar
  87. Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011b) 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77:5467–5475PubMedPubMedCentralCrossRefGoogle Scholar
  88. Koutny M, Sancelme M, Dabin C, Pichon N, Delort AM, Lemaire J (2006) Acquired biodegradability of polyethylenes containing pro-oxidant additives. Polym Degrad Stab 91:1495–1503CrossRefGoogle Scholar
  89. Krasowska K, Janik H, Gradys A, Rutkowska M (2012) Degradation of polyurethanes in compost under natural conditions. J Appl Polym Sci 125:4252–4260CrossRefGoogle Scholar
  90. Krueger MC, Harms H, Schlosser D (2015a) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99:8857–8874PubMedCrossRefGoogle Scholar
  91. Krueger MC, Hofmann U, Moeder M, Schlosser D (2015b) Potential of wood-rotting Fungi to attack polystyrene sulfonate and its depolymerisation by Gloeophyllum trabeum via hydroquinone-driven Fenton chemistry. PLoS One 10:e0131773.  https://doi.org/10.1371/journal.pone.0131773CrossRefPubMedPubMedCentralGoogle Scholar
  92. Krueger MC, Seiwert B, Prager A, Zhang S, Abel B, Harms H, Schlosser D (2017) Degradation of polystyrene and selected analogues by biological Fenton chemistry approaches: opportunities and limitations. Chemosphere 173:520–528PubMedCrossRefGoogle Scholar
  93. Labow RS, Erfle DJ, Santerre JP (1996) Elastase-induced hydrolysis of synthetic solid substrates: poly(ester-urea-urethane) and poly(ether-urea-urethane). Biomaterials 17:2381–2388PubMedCrossRefGoogle Scholar
  94. Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 27:79–87PubMedCrossRefGoogle Scholar
  95. Lebreton LCM, van der Zwet J, Damsteeg J-W, Slat B, Andrady A, Reisser J (2017) River plastic emissions to the world’s oceans. Nat Commun 8:15611.  https://doi.org/10.1038/ncomms15611CrossRefPubMedPubMedCentralGoogle Scholar
  96. Lim S-P, Gan S-N, Tan IKP (2005) Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils. Appl Biochem Biotechnol 126:23.  https://doi.org/10.1007/s12010-005-0003-7CrossRefPubMedGoogle Scholar
  97. Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRefGoogle Scholar
  98. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442PubMedCrossRefGoogle Scholar
  99. Lülsdorf N, Vojcic L, Hellmuth H, Weber TT, Mussmann N, Martinez R, Schwaneberg U (2015) A first continuous 4-aminoantipyrine (4-AAP)-based screening system for directed esterase evolution. Appl Microbiol Biotechnol 99:5237–5246PubMedCrossRefGoogle Scholar
  100. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedPubMedCentralGoogle Scholar
  101. Marten E, Müller R-J, Deckwer W-D (2003) Studies on the enzymatic hydrolysis of polyesters I. Low molecular mass model esters and aliphatic polyesters. Polym Degrad Stab 80:485–501CrossRefGoogle Scholar
  102. Marten E, Müller R-J, Deckwer W-D (2005) Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Polym Degrad Stab 88:371–381CrossRefGoogle Scholar
  103. Matsumiya Y, Murata N, Tanabe E, Kubota K, Kubo M (2010) Isolation and characterization of an ether-type polyurethane-degrading micro-organism and analysis of degradation mechanism by Alternaria sp. J Appl Microbiol 108:1946–1953PubMedGoogle Scholar
  104. Matsumura S, Harai S, Toshima K (2001) Lipase-catalyzed transformation of poly(trimethylene carbonate) into cyclic monomer, trimethylene carbonate: a new strategy for sustainable polymer recycling using an enzyme. Macromol Rapid Commun 22:215–218CrossRefGoogle Scholar
  105. Messenger B (2012, Nov-Dec) Is waste gasification finally coming of age? Waste Manage World 18–23Google Scholar
  106. Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene. Biodegradation 19:851–858PubMedCrossRefGoogle Scholar
  107. Mukherjee S, Kundu PP (2014) Alkaline fungal degradation of oxidized polyethylene in black liquor: studies on the effect of lignin peroxidases and manganese peroxidases. J Appl Polym Sci 131.  https://doi.org/10.1002/app.40738CrossRefGoogle Scholar
  108. Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353PubMedPubMedCentralCrossRefGoogle Scholar
  109. Müller CA, Perz V, Provasnek C, Quartinello F, Guebitz GM, Berg G (2017) Discovery of polyesterases from moss-associated microorganisms. Appl Environ Microbiol 83:e02641–e02616PubMedPubMedCentralCrossRefGoogle Scholar
  110. Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101:5013–5022PubMedCrossRefGoogle Scholar
  111. Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62:456–460PubMedPubMedCentralGoogle Scholar
  112. Nakamiya K, Sakasita G, Ooi T, Kinoshita S (1997) Enzymatic degradation of polystyrene by hydroquinone peroxidase of Azotobacter beijerinckii HM121. J Ferment Bioeng 84:480–482CrossRefGoogle Scholar
  113. NatureWorks (2017) Composting Ingeo. NatureWorks LLC. http://www.natureworksllc.com/What-is-Ingeo/Where-it-Goes/Composting. Accessed 09 Oct 2017
  114. Negoro S, Shibata N, Tanaka Y, Yasuhira K, Shibata H, Hashimoto H, Lee YH, Oshima S, Santa R, Oshima S, Mochiji K, Goto Y, Ikegami T, Nagai K, Kato D, Takeo M, Higuchi Y (2012) Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis. J Biol Chem 287:5079–5090PubMedCrossRefGoogle Scholar
  115. Nimchua T, Punnapayak H, Zimmermann W (2007) Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi. Biotechnol J 2:361–364PubMedCrossRefGoogle Scholar
  116. Nishida H, Tokiwa Y (1993) Distribution of poly(β-hydroxybutyrate) and poly(ɛ-caprolactone) aerobic degrading microorganisms in different environments. J Environ Polym Degr 1:227–233CrossRefGoogle Scholar
  117. Oeser T, Wei R, Baumgarten T, Billig S, Follner C, Zimmermann W (2010) High level expression of a hydrophobic poly(ethylene terephthalate)-hydrolyzing carboxylesterase from Thermobifida fusca KW3 in Escherichia coli BL21(DE3). J Biotechnol 146:100–104PubMedCrossRefGoogle Scholar
  118. Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) Biodegradation of low-density polyethylene, polystyrene, polyvinyl-chloride, and urea-formaldehyde resin buried under soil for over 32 years. J Appl Polym Sci 56:1789–1796CrossRefGoogle Scholar
  119. Phua SK, Castillo E, Anderson JM, Hiltner A (1987) Biodegradation of a polyurethane in vitro. J Biomed Mater Res 21:231–246PubMedCrossRefGoogle Scholar
  120. PlasticsEurope (2016) Plastics – the facts 2016. Düsseldorf. http://www.plasticseurope.org. Accessed 13 Oct 2017
  121. Pometto AL III, Lee BT, Johnson KE (1992) Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Appl Environ Microbiol 58:731–733PubMedPubMedCentralGoogle Scholar
  122. Pruter AT (1987) Sources, quantities and distribution of persistent plastics in the marine environment. Mar Pollut Bull 18:305–310CrossRefGoogle Scholar
  123. Rajandas H, Parimannan S, Sathasivam K, Ravichandran M, Yin LS (2012) A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Polym Test 31:1094–1099CrossRefGoogle Scholar
  124. Restrepo-Flórez J-M, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene - a review. Int Biodeterior Biodegrad 88:83–90CrossRefGoogle Scholar
  125. Revelles O, Beneroso D, Menéndez JA, Arenillas A, García JL, Prieto MA (2016a) Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in Rhodospirillum rubrum. Microb Biotechnol 10:1412.  https://doi.org/10.1111/1751-7915.12411CrossRefPubMedPubMedCentralGoogle Scholar
  126. Revelles O, Tarazona N, García JL, Prieto MA (2016b) Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum. Environ Microbiol 18:708–720PubMedCrossRefGoogle Scholar
  127. Rhee YH, Kim YH, Shin K-S (2006) Characterization of an extracellular poly(3-hydroxyoctanoate) depolymerase from the marine isolate, Pseudomonas luteola M13-4. Enzym Microb Technol 38:529–535CrossRefGoogle Scholar
  128. Ribitsch D, Heumann S, Trotscha E, Herrero Acero E, Greimel K, Leber R, Birner-Gruenberger R, Deller S, Eiteljoerg I, Remler P, Weber T, Siegert P, Maurer KH, Donelli I, Freddi G, Schwab H, Guebitz GM (2011) Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Biotechnol Prog 27:951–960PubMedCrossRefGoogle Scholar
  129. Ronkvist ÅM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138CrossRefGoogle Scholar
  130. Ruiz C, Main T, Hilliard NP, Howard GT (1999) Purification and characterization of two polyurethanase enzymes from Pseudomonas chlororaphis. Int Biodeterior Biodegrad 43:43–47CrossRefGoogle Scholar
  131. Ruiz-Dueñas FJ, Martinez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177PubMedPubMedCentralCrossRefGoogle Scholar
  132. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Núñez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MPN, Boulanger L-A, Bascom-Slack C, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084PubMedPubMedCentralCrossRefGoogle Scholar
  133. Ryan PG, Moore CJ, van Franeker JA, Moloney CL (2009) Monitoring the abundance of plastic debris in the marine environment. Philos Trans R Soc B 364:1999–2012CrossRefGoogle Scholar
  134. Santana VT, Goncalves SPC, Agnelli JAM, Martins-Franchetti SM (2012) Biodegradation of a polylactic acid/polyvinyl chloride blend in soil. J Appl Polym Sci 125:536–540CrossRefGoogle Scholar
  135. Santo M, Weitsman R, Sivan A (2013) The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 84:204–210CrossRefGoogle Scholar
  136. Schmidt J, Wei R, Oeser T, Belisário-Ferrari MR, Barth M, Then J, Zimmermann W (2016) Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases. FEBS Open Bio 6:919–927PubMedPubMedCentralCrossRefGoogle Scholar
  137. Schmidt J, Wei R, Oeser T, Dedavid e Silva L, Breite D, Schulze A, Zimmermann W (2017) Degradation of polyester polyurethane by bacterial polyester hydrolases. Polymer 9:65.  https://doi.org/10.3390/polym9020065CrossRefGoogle Scholar
  138. Shah Z, Krumholz L, Aktas DF, Hasan F, Khattak M, Shah AA (2013) Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Biodegradation 24:865–877PubMedCrossRefGoogle Scholar
  139. Shinozaki Y, Morita T, Cao XH, Yoshida S, Koitabashi M, Watanabe T, Suzuki K, Sameshima-Yamashita Y, Nakajima-Kambe T, Fujii T, Kitamoto HK (2013) Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Appl Microbiol Biotechnol 97:2951–2959PubMedCrossRefGoogle Scholar
  140. Sielicki M, Focht DD, Martin JP (1978) Microbial degradation of [14C]polystyrene and 1,3-diphenylbutane. Can J Microbiol 24:798–803PubMedCrossRefGoogle Scholar
  141. Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426PubMedCrossRefGoogle Scholar
  142. Sridewi N, Bhubalan K, Sudesh K (2006) Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem. Polym Degrad Stab 91:2931–2940CrossRefGoogle Scholar
  143. Succinity (2016) Biobased polybutylene succinate (PBS) – an attractive polymer for biopolymer compounds. Succinity GmbH & Nova-Institute. http://www.succinity.com/images/succinity_broschure.pdf. Accessed 09 Oct 2017
  144. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555CrossRefGoogle Scholar
  145. Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78:1556–1562PubMedPubMedCentralCrossRefGoogle Scholar
  146. Suyama T, Tokiwa Y (1997) Enzymatic degradation of an aliphatic polycarbonate, poly(tetramethylene carbonate). Enzym Microb Technol 20:122–126CrossRefGoogle Scholar
  147. Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011PubMedPubMedCentralGoogle Scholar
  148. Tanigaki N, Fujinaga Y, Kajiyama H, Ishida Y (2013) Operating and environmental performances of commercial-scale waste gasification and melting technology. Waste Manage Res 31:1118–1124CrossRefGoogle Scholar
  149. Then J, Wei R, Oeser T, Barth M, Belisário-Ferrari MR, Schmidt J, Zimmermann W (2015) Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnol J 10:592–598PubMedCrossRefGoogle Scholar
  150. Then J, Wei R, Oeser T, Gerdts A, Schmidt J, Barth M, Zimmermann W (2016) A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate. FEBS Open Bio 6:425–432PubMedPubMedCentralCrossRefGoogle Scholar
  151. Thirunavukarasu K, Purushothaman S, Sridevi J, Aarthy M, Gowthaman MK, Nakajima-Kambe T, Kamini NR (2016) Degradation of poly(butylene succinate) and poly(butylene succinate-co-butylene adipate) by a lipase from yeast Cryptococcus sp. grown on agro-industrial residues. Int Biodeterior Biodegrad 110:99–107CrossRefGoogle Scholar
  152. Tokiwa Y, Pranamuda H (2002) Microbial degradation of polyesters. In: Steinbüchel A, Doi Y (eds) Polyesters II: properties and chemical synthesis. Wiley-VCH Verlag GmbH, WeinheimGoogle Scholar
  153. Tokiwa Y, Suzuki T (1981) Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J Appl Polym Sci 26:441–448CrossRefGoogle Scholar
  154. Tsuji H (2002) Polylactides. In: Steinbüchel A, Doi Y (eds) Biopolymers: polyesters III. Wiley-VCH, Weinheim, pp 129–177Google Scholar
  155. UNESCO (1994) Marine debris: solid waste management action plan for the wider Caribbean. IOC Technical series, vol 41. UNESCO, ParisGoogle Scholar
  156. US EPA (2016) Advancing sustainable materials management: 2014 fact sheet. US EPA, Office of Land and Emergency Management, Washington, DC. Report: EPA530-R-17-01Google Scholar
  157. Vertommen MAME, Nierstrasz VA, Veer M, Warmoeskerken MMCG (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120:376–386PubMedCrossRefGoogle Scholar
  158. Volke-Sepulveda T, Saucedo-Castaneda G, Gutierrez-Rojas M, Manzur A, Favela-Torres E (2002) Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. J Appl Polym Sci 83:305–314CrossRefGoogle Scholar
  159. Volova TG, Prudnikova SV, Vinogradova ON, Syrvacheva DA, Shishatskaya EI (2017) Microbial degradation of polyhydroxyalkanoates with different chemical compositions and their biodegradability. Microb Ecol 73:353–367PubMedCrossRefGoogle Scholar
  160. Walsh M, O’Connor K, Babu R, Woods T, Kenny S (2015) Plant oils and products of their hydrolysis as substrates for polyhydroxyalkanoate synthesis. Chem Biochem Eng Q 29:123–133CrossRefGoogle Scholar
  161. Wang GB, Labow RS, Santerre JP (1997) Biodegradation of a poly(ester)urea-urethane by cholesterol esterase: isolation and identification of principal biodegradation products. J Biomed Mater Res 36:407–417PubMedCrossRefGoogle Scholar
  162. Wang Y-W, Mo W, Yao H, Wu Q, Chen J, Chen G-Q (2004) Biodegradation studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polym Degrad Stab 85:815–821CrossRefGoogle Scholar
  163. Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206CrossRefGoogle Scholar
  164. Ward PG, Goff M, Donner M, Kaminsky W, O’Connor KE (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40:2433–2437PubMedCrossRefGoogle Scholar
  165. Wei R, Zimmermann W (2017a) Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol 10:1308–1322PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wei R, Zimmermann W (2017b) Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microb Biotechnol 10:1302–1307PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wei R, Oeser T, Barth M, Weigl N, Lübs A, Schulz-Siegmund M, Hacker MC, Zimmermann W (2014a) Turbidimetric analysis of the enzymatic hydrolysis of polyethylene terephthalate nanoparticles. J Mol Catal B Enzym 103:72–78CrossRefGoogle Scholar
  168. Wei R, Oeser T, Then J, Kühn N, Barth M, Schmidt J, Zimmermann W (2014b) Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express 4:44.  https://doi.org/10.1186/s13568-014-0044-9CrossRefPubMedPubMedCentralGoogle Scholar
  169. Wei R, Oeser T, Zimmermann W (2014c) Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes. Adv Appl Microbiol 89:267–305PubMedCrossRefGoogle Scholar
  170. Wei R, Oeser T, Schmidt J, Meier R, Barth M, Then J, Zimmermann W (2016) Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnol Bioeng 113:1658–1665PubMedCrossRefGoogle Scholar
  171. White GF, Russell NJ, Tidswell EC (1996) Bacterial scission of ether bonds. Microbiol Rev 60:216–232PubMedPubMedCentralGoogle Scholar
  172. Wilkins MR, Atiyeh HK (2011) Microbial production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:326–330PubMedCrossRefGoogle Scholar
  173. Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Müller RJ (2001) Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299PubMedCrossRefGoogle Scholar
  174. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer – polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256CrossRefGoogle Scholar
  175. World Economic Forum, Ellen MacArthur Foundation, McKinsey & Company (2015) Project MainStream – a global collaboration to accelerate the transition towards the circular economy. World Economic Forum, Geneva. REF 041214Google Scholar
  176. Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327CrossRefGoogle Scholar
  177. Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784PubMedCrossRefGoogle Scholar
  178. Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015a) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49:12080–12086PubMedCrossRefGoogle Scholar
  179. Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015b) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 49:12087–12093PubMedCrossRefGoogle Scholar
  180. Yoon MG, Jeon HJ, Kim NM (2012) Biodegradation of polyethylene by a soil bacterium and alkB cloned recombinant cell. J Bioremed Biodegrad 3:145.  https://doi.org/10.4172/2155-6199.1000145
  181. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199PubMedCrossRefGoogle Scholar
  182. Zhang L, Liu H, Zheng L, Zhang J, Du Y, Feng H (1996) Biodegradability of regenerated cellulose films in soil. Ind Eng Chem Res 35:4682–4685CrossRefGoogle Scholar
  183. Zhang Q, Dor L, Fenigshtein D, Yang W, Blasiak W (2012) Gasification of municipal solid waste in the plasma gasification melting process. Appl Energy 90:106–112CrossRefGoogle Scholar
  184. Zimmermann W, Billig S (2011) Enzymes for the biofunctionalization of poly(ethylene terephthalate). Adv Biochem Eng Biotechnol 125:97–120PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nick Wierckx
    • 1
  • Tanja Narancic
    • 2
  • Christian Eberlein
    • 3
  • Ren Wei
    • 4
  • Oliver Drzyzga
    • 5
  • Audrey Magnin
    • 6
  • Hendrik Ballerstedt
    • 1
  • Shane T. Kenny
    • 7
  • Eric Pollet
    • 6
  • Luc Avérous
    • 6
  • Kevin E. O’Connor
    • 2
    • 8
  • Wolfgang Zimmermann
    • 4
  • Hermann J. Heipieper
    • 3
  • Auxiliadora Prieto
    • 5
  • José Jiménez
    • 9
  • Lars M. Blank
    • 1
  1. 1.Institute of Applied Microbiology (iAMB)RWTH Aachen UniversityAachenGermany
  2. 2.UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinBelfield, DublinIreland
  3. 3.Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
  4. 4.Department of Microbiology and Bioprocess Technology, Institute of BiochemistryLeipzig UniversityLeipzigGermany
  5. 5.Biological Research Center (CIB-CSIC)MadridSpain
  6. 6.BioTeam/ICPEES-ECPM, UMR CNRS 7515Université de StrasbourgStrasbourgFrance
  7. 7.Bioplastech Ltd., Nova UCD, Belfield Innovation ParkUniversity College DublinBelfield, DublinIreland
  8. 8.BEACON – Bioeconomy Research CentreUniversity College DublinBelfield, DublinIreland
  9. 9.Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUnited Kingdom

Personalised recommendations