Advertisement

Bone and Diabetes

  • Jakob Starup-Linde
  • Søren Gregersen
Reference work entry
Part of the Endocrinology book series (ENDOCR)

Abstract

Diabetes is associated with an increased risk of fracture. Commonly used risk factors underestimate the increased fracture risk, whereas they are solid predictors in subjects without diabetes. Bone mineral density measurements which are used for diagnosis of osteoporosis underestimate the fracture risk in patients with diabetes. Diabetes is a state of low bone turnover which may contribute to increased bone fragility. The low bone turnover is likely to be due to hyperglycemia and altered incretin response. Furthermore, diabetes may glycosylate bone collagen, which may reduce bone strength. Presently no specific treatment strategy is available for diabetes in regard of the bone. Although most anti-osteoporotic treatments seem to be safe, the benefit may be less when treating a low bone turnover disease. This chapter highlights the epidemiology, mechanisms, diagnosis, and treatment of diabetic bone disease.

Keywords

Type 1 diabetes Type 2 diabetes Fracture Hip fracture Vertebral fracture Hyperglycemia Bone turnover Incretins Bone mineral density Cortical porosity Diagnosis Diabetic bone disease Collagen Advanced glycosylation end products High-resolution peripheral quantitative computed tomography Comorbidities Glucose-lowering drugs Anti-osteoporotic treatment 

References

  1. Abdalrahaman N, McComb C, Foster J, et al. Deficits in trabecular bone microarchitecture in young women with type 1 diabetes mellitus. J Bone Miner Res. 2015;30(8):1386–93.  https://doi.org/10.1002/jbmr.2465.CrossRefPubMedGoogle Scholar
  2. Alba M, Xie J, Fung A, et al. The effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on mineral metabolism and bone in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2016;32(8):1375–85.  https://doi.org/10.1080/03007995.2016.1174841.CrossRefPubMedGoogle Scholar
  3. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35(Suppl 1):S64–71.  https://doi.org/10.2337/dc12-s064.CrossRefGoogle Scholar
  4. Ardawi MS, Akhbar DH, Alshaikh A, et al. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone. 2013;56(2):355–62.  https://doi.org/10.1016/j.bone.2013.06.029.CrossRefPubMedGoogle Scholar
  5. Armas LA, Akhter MP, Drincic A, et al. Trabecular bone histomorphometry in humans with type 1 diabetes mellitus. Bone. 2012;50(1):91–6.  https://doi.org/10.1016/j.bone.2011.09.055.CrossRefPubMedGoogle Scholar
  6. Basu R, Peterson J, Rizza R, et al. Effects of physiological variations in circulating insulin levels on bone turnover in humans. J Clin Endocrinol Metab. 2011;96(5):1450–5.CrossRefGoogle Scholar
  7. Bauer DC. HMG CoA reductase inhibitors and the skeleton: a comprehensive review. Osteoporos Int. 2003;14(4):273–82.  https://doi.org/10.1007/s00198-002-1323-x.CrossRefPubMedGoogle Scholar
  8. Bjarnason NH, Henriksen EE, Alexandersen P, et al. Mechanism of circadian variation in bone resorption. Bone. 2002;30(1):307–13.  https://doi.org/10.1016/S8756-3282(01)00662-7.CrossRefPubMedGoogle Scholar
  9. Bollag RJ, Zhong Q, Phillips P, et al. Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology. 2000;141(3):1228–35.  https://doi.org/10.1210/endo.141.3.7366.CrossRefPubMedGoogle Scholar
  10. Bonds DE, Larson JC, Schwartz AV, et al. Risk of fracture in women with type 2 diabetes: the women’s health initiative observational study. J Clin Endocrinol Metab. 2006;91(9):3404–10.  https://doi.org/10.1210/jc.2006-0614.CrossRefPubMedGoogle Scholar
  11. Bone HG, Bolognese MA, Yuen CK, et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab. 2011;96(4):972–80.  https://doi.org/10.1210/jc.2010-1502.CrossRefPubMedGoogle Scholar
  12. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.  https://doi.org/10.1002/jbmr.320.CrossRefPubMedGoogle Scholar
  13. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.  https://doi.org/10.1038/nature01658.CrossRefPubMedGoogle Scholar
  14. Brunton SA. Nocturnal hypoglycemia: answering the challenge with long-acting insulin analogs. Med Gen Med. 2007;9(2):38.Google Scholar
  15. Canalis E, Mazziotti G, Giustina A, et al. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18(10):1319–28.  https://doi.org/10.1007/s00198-007-0394-0.CrossRefPubMedGoogle Scholar
  16. Carlsson S, Hammar N, Grill V, et al. Alcohol consumption and the incidence of type 2 diabetes: a 20-year follow-up of the finnish twin cohort study. Diabetes Care. 2003;26(10):2785–90.CrossRefGoogle Scholar
  17. Chailurkit LO, Chanprasertyothin S, Rajatanavin R, et al. Reduced attenuation of bone resorption after oral glucose in type 2 diabetes. Clin Endocrinol. 2008;68(6):858–62.  https://doi.org/10.1111/j.1365-2265.2007.03159.x.CrossRefGoogle Scholar
  18. Chapman IM. Obesity paradox during aging. Interdiscip Top Gerontol. 2010;37:20–36.  https://doi.org/10.1159/000319992.CrossRefPubMedGoogle Scholar
  19. Cheung AM, Adachi JD, Hanley DA, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian bone strength working group. Curr Osteoporos Rep. 2013;11(2):136–46.  https://doi.org/10.1007/s11914-013-0140-9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Clarke BL. Anti-sclerostin antibodies: utility in treatment of osteoporosis. Maturitas. 2014;78(3):199–204.CrossRefGoogle Scholar
  21. Clowes JA, Allen HC, Prentis DM, et al. Octreotide abolishes the acute decrease in bone turnover in response to oral glucose. J Clin Endocrinol Metab. 2003;88(10):4867–73.  https://doi.org/10.1210/jc.2002-021447.CrossRefPubMedGoogle Scholar
  22. Colhoun HM, Livingstone SJ, Looker HC, et al. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia. 2012;55(11):2929–37.  https://doi.org/10.1007/s00125-012-2668-0.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Compston J. Is fracture risk increased in patients with coeliac disease? Gut. 2003;52(4):459–60.CrossRefGoogle Scholar
  24. Conway BN, Long DM, Figaro MK, et al. Glycemic control and fracture risk in elderly patients with diabetes. Diabetes Res Clin Pract. 2016;115:47–53.  https://doi.org/10.1016/j.diabres.2016.03.009.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dhaliwal R, Cibula D, Ghosh C, et al. Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int. 2014;25(7):1969–73.  https://doi.org/10.1007/s00198-014-2704-7.CrossRefPubMedGoogle Scholar
  26. Driessen JH, van Onzenoort HA, Starup-Linde J, et al. Use of glucagon-like-peptide 1 receptor agonists and risk of fracture as compared to use of other anti-hyperglycemic drugs. Calcif Tissue Int. 2015a;97(5):506–15.  https://doi.org/10.1007/s00223-015-0037-y.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Driessen JH, van Onzenoort HA, Starup-Linde J, et al. Use of dipeptidyl peptidase 4 inhibitors and fracture risk compared to use of other anti-hyperglycemic drugs. Pharmacoepidemiol Drug Saf. 2015b;24(10):1017–25.  https://doi.org/10.1002/pds.3837.CrossRefPubMedGoogle Scholar
  28. Elbitar S, Khoury PE, Ghaleb Y, et al. Proprotein convertase subtilisin / kexin 9 (PCSK9) inhibitors and the future of dyslipidemia therapy: an updated patent review (2011-2015). Expert Opin Ther Pat. 2016;26(12):1377–92.  https://doi.org/10.1080/13543776.2016.1206080.CrossRefPubMedGoogle Scholar
  29. Esser N, Legrand-Poels S, Piette J, et al. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(2):141–50.  https://doi.org/10.1016/j.diabres.2014.04.006.CrossRefPubMedGoogle Scholar
  30. Fan Y, Wei F, Lang Y, et al. Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int. 2015;27(1):219–28.  https://doi.org/10.1007/s00198-015-3279-7.CrossRefPubMedGoogle Scholar
  31. Farr JN, Drake MT, Amin S, et al. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29(4):787–95.  https://doi.org/10.1002/jbmr.2106.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ferrari S. Sequential/combined therapies in osteoporosis. Osteoporos Int. 2015;26(1):S65.Google Scholar
  33. Foy CG, Bell RA, Farmer DF, et al. Smoking and incidence of diabetes among U.S. adults: findings from the insulin resistance atherosclerosis study. Diabetes Care. 2005;28(10):2501–7.  https://doi.org/10.2337/diacare.28.10.2501.CrossRefPubMedGoogle Scholar
  34. Furst JR, Bandeira LC, Fan WW, et al. Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab. 2016;101(6):2502–10.  https://doi.org/10.1210/jc.2016-1437.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Garcia-Hernandez A, Arzate H, Gil-Chavarria I, et al. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone. 2012;50(1):276–88.  https://doi.org/10.1016/j.bone.2011.10.032.CrossRefPubMedGoogle Scholar
  36. Giangregorio LM, Leslie WD, Lix LM, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012;27(2):301–8.  https://doi.org/10.1002/jbmr.556.CrossRefPubMedGoogle Scholar
  37. Gimble JM, Zvonic S, Floyd ZE, et al. Playing with bone and fat. J Cell Biochem. 2006;98(2):251–66.  https://doi.org/10.1002/jcb.20777.CrossRefPubMedGoogle Scholar
  38. Hall JE, Guyton AC. Guyton and hall textbook of medical physiology. 12th ed. Philadelphia: Saunders/Elsevier; 2011.Google Scholar
  39. Hardt PD, Brendel MD, Kloer HU, et al. Is pancreatic diabetes (type 3c diabetes) underdiagnosed and misdiagnosed? Diabetes Care. 2008;31(Suppl 2):S165–9.  https://doi.org/10.2337/dc08-s244.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hasserius R, Karlsson MK, Jonsson B, et al. Long-term morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly – a 12- and 22-year follow-up of 257 patients. Calcif Tissue Int. 2005;76(4):235–42.  https://doi.org/10.1007/s00223-004-2222-2.CrossRefPubMedGoogle Scholar
  41. Heilmeier U, Cheng K, Pasco C, et al. Cortical bone laminar analysis reveals increased midcortical and periosteal porosity in type 2 diabetic postmenopausal women with history of fragility fractures compared to fracture-free diabetics. Osteoporos Int. 2016;27(9):2791–802.  https://doi.org/10.1007/s00198-016-3614-7.CrossRefPubMedGoogle Scholar
  42. Henriksen DB, Alexandersen P, Bjarnason NH, et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res. 2003;18(12):2180–9.  https://doi.org/10.1359/jbmr.2003.18.12.2180.CrossRefPubMedGoogle Scholar
  43. Hernandez JL, Olmos JM, Romana G, et al. Bone turnover markers in statin users: a population-based analysis from the Camargo cohort study. Maturitas. 2013;75(1):67–73.  https://doi.org/10.1016/j.maturitas.2013.02.003.CrossRefPubMedGoogle Scholar
  44. Herrera A, Mateo J, Gil-Albarova J, et al. Prevalence of osteoporotic vertebral fracture in spanish women over age 45. Maturitas. 2015;80(3):288–95.  https://doi.org/10.1016/j.maturitas.2014.12.004.CrossRefPubMedGoogle Scholar
  45. Holst JJ, Knop FK, Vilsboll T, et al. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care. 2011;34(Suppl 2):S251–7.  https://doi.org/10.2337/dc11-s227.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hwang JL, Weiss RE. Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes Metab Res Rev. 2014;30(2):96–102.  https://doi.org/10.1002/dmrr.2486.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Imai Y, Youn MY, Inoue K, et al. Nuclear receptors in bone physiology and diseases. Physiol Rev. 2013;93(2):481–523.  https://doi.org/10.1152/physrev.00008.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  48. International Diabetes Federation. IDF diabetes atlas update. 2014. http://www.idf.org/diabetesatlas/update-2014. Accessed 10 Feb 2015
  49. IOF. IOF epidemiology. 2015. http://www.iofbonehealth.org/epidemiology. Accessed 11 Feb 2015
  50. Janghorbani M, van Dam RM, Willett WC, et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166(5):495–505.  https://doi.org/10.1093/aje/kwm106.CrossRefPubMedGoogle Scholar
  51. Kahn SE, Zinman B, Lachin JM, et al. Rosiglitazone-associated fractures in type 2 diabetes: an analysis from a diabetes outcome progression trial (ADOPT). Diabetes Care. 2008;31(5):845–51.  https://doi.org/10.2337/dc07-2270.CrossRefPubMedGoogle Scholar
  52. Kanazawa I, Yamaguchi T, Sugimoto T. Serum insulin-like growth factor-I is a marker for assessing the severity of vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Osteoporos Int. 2011;22(4):1191–8.  https://doi.org/10.1007/s00198-010-1310-6.CrossRefPubMedGoogle Scholar
  53. Kanis JA, Johansson H, Johnell O, et al. Alcohol intake as a risk factor for fracture. Osteoporos Int. 2005a;16(7):737–42.  https://doi.org/10.1007/s00198-004-1734-y.CrossRefPubMedGoogle Scholar
  54. Kanis JA, Johnell O, Oden A, et al. Smoking and fracture risk: a meta-analysis. Osteoporos Int. 2005b;16(2):155–62.  https://doi.org/10.1007/s00198-004-1640-3.CrossRefPubMedGoogle Scholar
  55. Kannus P, Parkkari J, Niemi S, et al. Prevention of hip fracture in elderly people with use of a hip protector. N Engl J Med. 2000;343(21):1506–13.  https://doi.org/10.1056/NEJM200011233432101.CrossRefPubMedGoogle Scholar
  56. Keegan TH, Schwartz AV, Bauer DC, et al. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care. 2004;27(7):1547–53.  https://doi.org/10.2337/diacare.27.7.1547.CrossRefPubMedGoogle Scholar
  57. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142(12):5050–5.  https://doi.org/10.1210/endo.142.12.8536.CrossRefPubMedGoogle Scholar
  58. Khosla S, Riggs BL. Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin N Am. 2005;34(4):1015–30.  https://doi.org/10.1016/j.ecl.2005.07.009.CrossRefGoogle Scholar
  59. Kim JH, Choi HJ, Ku EJ, et al. Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab. 2015;100(2):475–82.  https://doi.org/10.1210/jc.2014-2047.CrossRefPubMedGoogle Scholar
  60. Kiyohara N, Yamamoto M, Sugimoto T. Discordance between prevalent vertebral fracture and vertebral strength estimated by the finite element method based on quantitative computed tomography in patients with type 2 diabetes mellitus. PLoS One. 2015;10(12):e0144496.  https://doi.org/10.1371/journal.pone.0144496.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kostolanska J, Jakus V, Barak L. HbA1c and serum levels of advanced glycation and oxidation protein products in poorly and well controlled children and adolescents with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2009;22(5):433–42.CrossRefGoogle Scholar
  62. Krakauer JC, McKenna MJ, Buderer NF, et al. Bone loss and bone turnover in diabetes. Diabetes. 1995;44(7):775–82.CrossRefGoogle Scholar
  63. Lapane KL, Yang S, Brown MJ, et al. Sulfonylureas and risk of falls and fractures: a systematic review. Drugs Aging. 2013;30(7):527–47.  https://doi.org/10.1007/s40266-013-0081-0.CrossRefPubMedGoogle Scholar
  64. Lecka-Czernik B. PPARs in bone: the role in bone cell differentiation nd regulation of energy metabolism. Curr Osteoporosis Rep. 2010;8(2):84–90.CrossRefGoogle Scholar
  65. Lecka-Czernik B, Rosen CJ, Kawai M. Skeletal aging and the adipocyte program: new insights from an “old” molecule. Cell Cycle. 2010;9(18):3648–54.  https://doi.org/10.1111/j.1749-6632.2009.05221.x.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lee RH, Colon-Emeric C. Increased fracture risk among women with diabetes mellitus is mediated by increased falls propensity. J Am Geriatr Soc. 2014;62:S58.Google Scholar
  67. Leslie WD, Aubry-Rozier B, Lamy O, et al. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013;98(2):602–9.  https://doi.org/10.1210/jc.2012-3118.CrossRefPubMedGoogle Scholar
  68. Leslie WD, Morin SN, Lix LM, et al. Does diabetes modify the effect of FRAX risk factors for predicting major osteoporotic and hip fracture? Osteoporos Int. 2014;25(12):2817–24.  https://doi.org/10.1007/s00198-014-2822-2.CrossRefPubMedGoogle Scholar
  69. Li CI, Liu CS, Lin WY, et al. Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan diabetes cohort study. J Bone Miner Res. 2015;30(7):1338–46.  https://doi.org/10.1002/jbmr.2462.CrossRefPubMedGoogle Scholar
  70. Luegmayr E, Glantschnig H, Wesolowski GA, et al. Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ. 2004;11(Suppl 1):S108–18.  https://doi.org/10.1038/sj.cdd.4401399.CrossRefPubMedGoogle Scholar
  71. Mabilleau G, Mieczkowska A, Chappard D. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. J Diabetes. 2014;6(3):260–6.  https://doi.org/10.1111/1753-0407.12102.CrossRefPubMedGoogle Scholar
  72. Manavalan JS, Cremers S, Dempster DW, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(9):3240–50.  https://doi.org/10.1210/jc.2012-1546.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Martinez-Laguna D, Tebe C, Javaid MK, et al. Incident type 2 diabetes and hip fracture risk: a population-based matched cohort study. Osteoporos Int. 2015;26(2):827–33.  https://doi.org/10.1007/s00198-014-2986-9.CrossRefPubMedGoogle Scholar
  74. McCarty MF. Anabolic effects of insulin on bone suggest a role for chromium picolinate in preservation of bone density. Med Hypotheses. 1995;45(3):241–6.  https://doi.org/10.1016/0306-9877(95)90112-4.CrossRefPubMedGoogle Scholar
  75. Meier C, Schwartz AV, Egger A, et al. Effects of diabetes drugs on the skeleton. Bone. 2015;82:93–100.  https://doi.org/10.1016/j.bone.2015.04.026.CrossRefPubMedGoogle Scholar
  76. Melton LJ III, Atkinson EJ, Cooper C, et al. Vertebral fractures predict subsequent fractures. Osteoporos Int. 1999;10(3):214–21.  https://doi.org/10.1007/s001980050218.CrossRefPubMedGoogle Scholar
  77. Melton LJ III, Leibson CL, Achenbach SJ, et al. Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res. 2008;23(8):1334–42.  https://doi.org/10.1359/jbmr.080323.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Monami M, Dicembrini I, Antenore A, et al. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care. 2011;34(11):2474–6.  https://doi.org/10.2337/dc11-1099.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Munigala S, Agarwal B, Gelrud A, et al. Chronic pancreatitis and fracture: a retrospective, population-based veterans administration study. Pancreas. 2015;45(3):355–61.  https://doi.org/10.1097/MPA.0000000000000381.CrossRefGoogle Scholar
  80. Napoli N, Strotmeyer ES, Ensrud KE, et al. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia. 2014;57(10):2057–65.  https://doi.org/10.1007/s00125-014-3289-6.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Neumann T, Lodes S, Kastner B, et al. High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int. 2014;25(5):1527–33.  https://doi.org/10.1007/s00198-014-2631-7.CrossRefPubMedGoogle Scholar
  82. Nissen A, Christensen M, Knop FK, et al. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J Clin Endocrinol Metab. 2014;99(11):E2325–9.  https://doi.org/10.1210/jc.2014-2547.CrossRefPubMedGoogle Scholar
  83. Okayasu M, Nakayachi M, Hayashida C, et al. Low-density lipoprotein receptor deficiency causes impaired osteoclastogenesis and increased bone mass in mice because of defect in osteoclastic cell-cell fusion. J Biol Chem. 2012;287(23):19229–41.  https://doi.org/10.1074/jbc.M111.323600.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Paccou J, Ward KA, Jameson KA, et al. Bone microarchitecture in men and women with diabetes: the importance of cortical porosity. Calcif Tissue Int. 2016;98(5):465–73.  https://doi.org/10.1007/s00223-015-0100-8.CrossRefPubMedGoogle Scholar
  85. Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, et al. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011;11:12.  https://doi.org/10.1186/1472-6793-11-12.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Palermo A, D’Onofrio L, Eastell R, et al. Oral anti-diabetic drugs and fracture risk, cut to the bone: safe or dangerous? A narrative review. Osteoporos Int. 2015;26(8):2073–89.CrossRefGoogle Scholar
  87. Panula J, Pihlajamaki H, Mattila VM, et al. Mortality and cause of death in hip fracture patients aged 65 or older: a population-based study. BMC Musculoskelet Disord. 2011;12:105.  https://doi.org/10.1186/1471-2474-12-105.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Patsch JM, Burghardt AJ, Yap SP, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28(2):313–24.  https://doi.org/10.1002/jbmr.1763.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pierce AM, Lindskog S, Hammarstrom L. Osteoclasts: structure and function. Electron Microsc Rev. 1991;4(1):1–45.CrossRefGoogle Scholar
  90. Pscherer S, Kostev K, Dippel FW, et al. Fracture risk in patients with type 2 diabetes under different antidiabetic treatment regimens: a retrospective database analysis in primary care. Diabetes Metab Syndr Obes. 2016;9:17–23.  https://doi.org/10.2147/DMSO.S101370.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Rajpathak SN, Fu C, Brodovicz KG, et al. Sulfonylurea use and risk of hip fractures among elderly men and women with type 2 diabetes. Drugs Aging. 2015;32(4):321–7.  https://doi.org/10.1007/s40266-015-0254-0.CrossRefPubMedGoogle Scholar
  92. Rejnmark L, Vestergaard P, Mosekilde L. Statin but not non-statin lipid-lowering drugs decrease fracture risk: a nation-wide case-control study. Calcif Tissue Int. 2006;79(1):27–36.  https://doi.org/10.1007/s00223-006-0024-4.CrossRefPubMedGoogle Scholar
  93. Rubin MR, Paschalis EP, Poundarik A, et al. Advanced glycation endproducts and bone material properties in type 1 diabetic mice. PLoS One. 2016;11(5):e0154700.  https://doi.org/10.1371/journal.pone.0154700.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Saito M, Kida Y, Kato S, et al. Diabetes, collagen, and bone quality. Curr Osteoporosis Rep. 2014;12(2):181–8.CrossRefGoogle Scholar
  95. Santesso N, Carrasco-Labra A, Brignardello-Petersen R. Hip protectors for preventing hip fractures in older people. Cochrane Database Syst Rev. 2014;3:CD001255.  https://doi.org/10.1002/14651858.CD001255.pub5.CrossRefGoogle Scholar
  96. Sarles H. Chronic pancreatitis and diabetes. Bailliere Clin Endocrinol Metab. 1992;6(4):745–75.CrossRefGoogle Scholar
  97. Schwartz AV, Sellmeyer DE, Ensrud KE, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86(1):32–8.  https://doi.org/10.1210/jcem.86.1.7139.CrossRefPubMedGoogle Scholar
  98. Schwartz AV, Vittinghoff E, Bauer DC, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011;305(21):2184–92.  https://doi.org/10.1001/jama.2011.715.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Schwartz AV, Margolis KL, Sellmeyer DE, et al. Intensive glycemic control is not associated with fractures or falls in the ACCORD randomized trial. Diabetes Care. 2012;35(7):1525–31.  https://doi.org/10.2337/dc11-2184.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Schwartz AV, Pavo I, Alam J, et al. Teriparatide in patients with osteoporosis and type 2 diabetes. Bone. 2016;91:152–8.  https://doi.org/10.1016/j.bone.2016.06.017.CrossRefPubMedGoogle Scholar
  101. Shah VN, Shah CS, Snell-Bergeon JK. Type 1 diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med. 2015;32(9):1134–42.  https://doi.org/10.1111/dme.12734.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Shanbhogue VV, Hansen S, Frost M, et al. Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in adult patients with type 1 diabetes mellitus. J Bone Miner Res. 2015a;30(12):2188–99.  https://doi.org/10.1002/jbmr.2573.CrossRefPubMedGoogle Scholar
  103. Shanbhogue VV, Hansen S, Frost M, et al. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease. Eur J Endocrinol. 2015b;174(2):115–24.  https://doi.org/10.1530/EJE-15-0860.CrossRefPubMedGoogle Scholar
  104. Shu A, Yin MT, Stein E, et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int. 2012;23(2):635–41.  https://doi.org/10.1007/s00198-011-1595-0.CrossRefPubMedGoogle Scholar
  105. Starup-Linde J. Investigations of diabetic bone disease: literature, registry, and clinical studies [Dissertation]. Aalborg: VBN, Aalborg University, The Faculty of Medicine, Department of Clinical Medicine (Videnbasen for Aalborg Universitet Aalborg Universitet, Det Sundhedsvidenskabelige Fakultet Klinisk Institute); 2015.Google Scholar
  106. Starup-Linde J, Vestergaard P. Biochemical bone turnover markers in diabetes mellitus - a systematic review. Bone. 2016;82:69–78.  https://doi.org/10.1016/j.bone.2015.02.019.CrossRefPubMedGoogle Scholar
  107. Starup-Linde J, Eriksen SA, Lykkeboe S, et al. Biochemical markers of bone turnover in diabetes patients – a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int. 2014;25(6):1697–708.CrossRefGoogle Scholar
  108. Starup-Linde J, Frost M, Vestergaard P, et al. Epidemiology of fractures in diabetes. Calcif Tissue Int. 2016a;100(2):109–21.  https://doi.org/10.1007/s00223-016-0175-x.CrossRefPubMedGoogle Scholar
  109. Starup-Linde J, Gregersen S, Vestergaard P. Associations with fracture in patients with diabetes: a nested case-control study. BMJ Open. 2016b;6(2):e009686.  https://doi.org/10.1136/bmjopen-2015-009686.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Starup-Linde J, Lykkeboe S, Gregersen S, et al. Bone structure and predictors of fracture in type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2016c;101(3):928–36.  https://doi.org/10.1210/jc.2015-3882.CrossRefPubMedGoogle Scholar
  111. Starup-Linde J, Lykkeboe S, Gregersen S, et al. Differences in biochemical bone markers by diabetes type and the impact of glucose. Bone. 2016d;83:149–55.  https://doi.org/10.1016/j.bone.2015.11.004.CrossRefPubMedGoogle Scholar
  112. Tang X, Liu G, Kang J, et al. Obesity and risk of hip fracture in adults: a meta-analysis of prospective cohort studies. PLoS One. 2013;8(4):e55077.  https://doi.org/10.1371/journal.pone.0055077.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Toh S, Hernandez-Diaz S. Statins and fracture risk. A systematic review. Pharmacoepidemiol Drug Saf. 2007;16(6):627–40.  https://doi.org/10.1002/pds.1363.CrossRefPubMedGoogle Scholar
  114. Torekov SS, Iepsen EW, Lundgren J, et al. Treatment with a GLP-1 receptor agonist increases bone formation markers and prevents bone loss during weight loss maintenance in weight-reduced obese. Diabetes. 2015;64:A43.CrossRefGoogle Scholar
  115. van Lierop AH, Hamdy NA, van der Meer RW, et al. Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical markers of bone turnover in men with type 2 diabetes mellitus. Eur J Endocrinol. 2012;166(4):711–6.  https://doi.org/10.1530/EJE-11-1061.CrossRefPubMedGoogle Scholar
  116. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int. 2007;18(4):427–44.  https://doi.org/10.1007/s00198-006-0253-4.CrossRefPubMedGoogle Scholar
  117. Vestergaard P, Mosekilde L. Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid. 2002;12(5):411–9.  https://doi.org/10.1089/105072502760043503.CrossRefPubMedGoogle Scholar
  118. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005;48(7):1292–9.  https://doi.org/10.1007/s00125-005-1786-3.CrossRefPubMedGoogle Scholar
  119. Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2009;84(1):45–55.  https://doi.org/10.1007/s00223-008-9195-5.CrossRefPubMedGoogle Scholar
  120. Vestergaard P, Rejnmark L, Mosekilde L. Are antiresorptive drugs effective against fractures in patients with diabetes? Calcif Tissue Int. 2011;88(3):209–14.CrossRefGoogle Scholar
  121. Viegas M, Costa C, Lopes A, et al. Prevalence of osteoporosis and vertebral fractures in postmenopausal women with type 2 diabetes mellitus and their relationship with duration of the disease and chronic complications. J Diabetes Complicat. 2011;25(4):216–21.  https://doi.org/10.1016/j.jdiacomp.2011.02.004.CrossRefPubMedGoogle Scholar
  122. Waterloo S, Ahmed LA, Center JR, et al. Prevalence of vertebral fractures in women and men in the population-based tromso study. BMC Musculoskelet Disord. 2012;13:3.  https://doi.org/10.1186/1471-2474-13-3.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Weber DR, Haynes K, Leonard MB, et al. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using the health improvement network (THIN). Diabetes Care. 2015;38(10):1913–20.  https://doi.org/10.2337/dc15-0783.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Witek PR, Witek J, Pankowska E. Type 1 diabetes-associated autoimmune diseases: screening, diagnostic principles and management. Med Wieku Rozwoj. 2012;16(1):23–34.PubMedGoogle Scholar
  125. Xie D, Cheng H, Hamrick M, et al. Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone. 2005;37(6):759–69.  https://doi.org/10.1016/j.bone.2005.06.021.CrossRefPubMedGoogle Scholar
  126. Xie D, Zhong Q, Ding KH, et al. Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. Bone. 2007;40(5):1352–60.  https://doi.org/10.1016/j.bone.2007.01.007.CrossRefPubMedGoogle Scholar
  127. Xu J, Yue F, Wang J, et al. High glucose inhibits receptor activator of nuclear factorΰB ligand-induced osteoclast differentiation via downregulation of vATPase V0 subunit d2 and dendritic cellspecific transmembrane protein. Mol Med Rep. 2014;11(2):865–70.CrossRefGoogle Scholar
  128. Xu J, Yue F, Wang J, et al. High glucose inhibits receptor activator of nuclear factorkappaB ligand-induced osteoclast differentiation via downregulation of vATPase V0 subunit d2 and dendritic cellspecific transmembrane protein. Mol Med Rep. 2015;11(2):865–70.  https://doi.org/10.3892/mmr.2014.2807.CrossRefPubMedGoogle Scholar
  129. Yamamoto M, Yamauchi M, Sugimoto T. Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2013;98(10):4030–7.  https://doi.org/10.1210/jc.2013-2143.CrossRefPubMedGoogle Scholar
  130. Yang X, Mostafa AJ, Appleford M, et al. Bone formation is affected by matrix advanced glycation end products (AGEs) in vivo. Calcif Tissue Int. 2016;99(4):373–83.  https://doi.org/10.1007/s00223-016-0153-3.CrossRefPubMedGoogle Scholar
  131. Zhong Q, Itokawa T, Sridhar S, et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab. 2007;292(2):E543–8.  https://doi.org/10.1152/ajpendo.00364.2006.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark

Personalised recommendations