Formation of Isoprenoids

  • Jordi Pérez-GilEmail author
  • Manuel Rodríguez-Concepción
  • Claudia E. Vickers
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Isoprenoids, also known as terpenoids, are a diverse group of metabolites produced in all free-living organisms. They play an indispensable role in a wide variety of essential processes but also contribute to a better adaptation to the environment in the form of specialized secondary metabolites. In spite of their notable structural and functional diversity, all isoprenoids are synthesized from the same metabolic precursors, which are then converted into prenyl diphosphates of increasing length. Such basic prenyl diphosphate intermediates represent the starting point of downstream pathways leading to the formation of the vast diversity of end products. Here we present an overview of isoprenoid biosynthesis in microbes from the three kingdoms of life, namely, bacteria, archaea, and eukaryotic microorganisms (mainly microalgae and yeast), with a special emphasis on the research conducted during the last decade. We also discuss the main functional classes of isoprenoids occurring in these microorganisms by focusing in the representative model organisms of each kingdom. Finally, we examine key research needs in this field. This includes expanding our understanding of secondary isoprenoid metabolism in microbes, examining the evolutionary relationships between the two core biosynthetic pathways and improving our ability to engineer production of industrially useful isoprenoids in microbes.



Research at the authors’ laboratories was supported by a Marie Curie International outgoing Fellowship within the 7th European Community Framework Programme to JPG, an ERA-IB-2 project funded by the Spanish MINECO (PCIN-2015-103) to MRC, and a Queensland Government Accelerate Fellowship to CEV.


  1. Abe F, Hiraki T (2009) Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. Biochim Biophys Acta 1788:743–752CrossRefPubMedGoogle Scholar
  2. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74CrossRefPubMedPubMedCentralGoogle Scholar
  3. Azami Y, Hattori A, Nishimura H, Kawaide H, Yoshimura T, Hemmi H (2014) (R)-mevalonate 3-phosphate is an intermediate of the mevalonate pathway in Thermoplasma acidophilum. J Biol Chem 289:15957–15967CrossRefPubMedPubMedCentralGoogle Scholar
  4. Begley M, Bron PA, Heuston S, Casey PG, Englert N, Wiesner J, Jomaa H, Gahan CG, Hill C (2008) Analysis of the isoprenoid biosynthesis pathways in Listeria monocytogenes reveals a role for the alternative 2-C-methyl-D-erythritol 4-phosphate pathway in murine infection. Infect Immun 76:5392–5401CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906CrossRefPubMedGoogle Scholar
  6. Berthelot K, Estevez Y, Deffieux A, Peruch F (2012) Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie 94:1621–1634CrossRefPubMedGoogle Scholar
  7. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A 95:4126–4133CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boucher Y, Huber H, L’Haridon S, Stetter KO, Doolittle WF (2001) Bacterial origin for the isoprenoid biosynthesis enzyme HMG-CoA reductase of the archaeal orders Thermoplasmatales and Archaeoglobales. Mol Biol Evol 18:1378–1388CrossRefPubMedGoogle Scholar
  9. Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44:357–429CrossRefPubMedGoogle Scholar
  10. Bramkamp M, Lopez D (2015) Exploring the existence of lipid rafts in bacteria. Microbiol Mol Biol Rev 79:81–100CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brown AC, Parish T (2008) Dxr is essential in Mycobacterium tuberculosis and fosmidomycin resistance is due to a lack of uptake. BMC Microbiol 8:78CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496CrossRefPubMedGoogle Scholar
  13. Calegari-Santos R, Diogo RA, Fontana JD, Bonfim TM (2016) Carotenoid production by halophilic archaea under different culture conditions. Curr Microbiol 72:641–651CrossRefPubMedGoogle Scholar
  14. Carretero-Paulet L, Lipska A, Perez-Gil J, Sangari FJ, Albert VA, Rodriguez-Concepcion M (2013) Evolutionary diversification and characterization of the eubacterial gene family encoding DXR type II, an alternative isoprenoid biosynthetic enzyme. BMC Evol Biol 13:180CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chappe B, Michaelis W, Albrecht P, Ourisson G (1979) Fossil evidence for a novel series of archaebacterial lipids. Naturwissenschaften 66:522–523CrossRefGoogle Scholar
  16. Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229CrossRefPubMedGoogle Scholar
  17. Chew AG, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129CrossRefPubMedGoogle Scholar
  18. Choi JH, Ryu YW, Park YC, Seo JH (2009) Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q(10) production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene. J Biotechnol 144:64–69CrossRefPubMedGoogle Scholar
  19. Dairi T (2005) Studies on biosynthetic genes and enzymes of isoprenoids produced by actinomycetes. J Antibiot (Tokyo) 58:227–243CrossRefGoogle Scholar
  20. Dellas N, Thomas ST, Manning G, Noel JP (2013) Discovery of a metabolic alternative to the classical mevalonate pathway. Elife 2:e00672CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dumelin CE, Chen Y, Leconte AM, Chen YG, Liu DR (2012) Discovery and biological characterization of geranylated RNA in bacteria. Nat Chem Biol 8:913–919PubMedPubMedCentralGoogle Scholar
  22. Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L (2012) Ergosterol biosynthesis: a fungal pathway for life on land? Evolution 66:2961–2968CrossRefPubMedGoogle Scholar
  23. Ershov YV, Gantt RR, Cunningham FX Jr, Gantt E (2002) Isoprenoid biosynthesis in Synechocystis sp. strain PCC6803 is stimulated by compounds of the pentose phosphate cycle but not by pyruvate or deoxyxylulose-5-phosphate. J Bacteriol 184:5045–5051CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fernandes JF, Lell B, Agnandji ST, Obiang RM, Bassat Q, Kremsner PG, Mordmuller B, Grobusch MP (2015) Fosmidomycin as an antimalarial drug: a meta-analysis of clinical trials. Future Microbiol 10:1375–1390CrossRefPubMedGoogle Scholar
  25. Frank HA (1999) Incorporation of carotenoids into reaction Center and light-harvesting pigment-protein complexes. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Springer, Dordrecht, pp 235–244Google Scholar
  26. Frank A, Groll M (2017) The methylerythritol phosphate pathway to isoprenoids. Chem Rev 117:5675–5703Google Scholar
  27. Friesen JA, Rodwell VW (2004) The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol 5:248CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6:488–494PubMedGoogle Scholar
  29. Furubayashi M, Saito K, Umeno D (2014) Evolutionary analysis of the functional plasticity of Staphylococcus aureus C30 carotenoid synthase. J Biosci Bioeng 117:431–436CrossRefPubMedGoogle Scholar
  30. Gao Y, Honzatko RB, Peters RJ (2012) Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep 29:1153–1175CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ge D, Xue Y, Ma Y (2016) Two unexpected promiscuous activities of the iron-sulfur protein IspH in production of isoprene and isoamylene. Microb Cell Factories 15:79CrossRefGoogle Scholar
  32. Gerber NN, Lechevalier HA (1965) Geosmin, an earthly-smelling substance isolated from actinomycetes. Appl Microbiol 13:935–938PubMedPubMedCentralGoogle Scholar
  33. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414CrossRefPubMedGoogle Scholar
  34. Grochowski LL, Xu H, White RH (2006) Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 188:3192–3198CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gruchattka E, Hadicke O, Klamt S, Schutz V, Kayser O (2013) In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb Cell Factories 12:84CrossRefGoogle Scholar
  36. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210CrossRefGoogle Scholar
  37. Hamano Y, Dairi T, Yamamoto M, Kuzuyama T, Itoh N, Seto H (2002) Growth-phase dependent expression of the mevalonate pathway in a terpenoid antibiotic-producing Streptomyces strain. Biosci Biotechnol Biochem 66:808–819CrossRefPubMedGoogle Scholar
  38. Heuston S, Begley M, Davey MS, Eberl M, Casey PG, Hill C, Gahan CG (2012) HmgR, a key enzyme in the mevalonate pathway for isoprenoid biosynthesis, is essential for growth of Listeria monocytogenes EGDe. Microbiology 158:1684–1693CrossRefPubMedGoogle Scholar
  39. Ivanov SS, Charron G, Hang HC, Roy CR (2010) Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J Biol Chem 285:34686–34698CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jain S, Caforio A, Driessen AJ (2014) Biosynthesis of archaeal membrane ether lipids. Front Microbiol 5:641CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jiang J, He X, Cane DE (2007) Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat Chem Biol 3:711–715CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kaneda K, Kuzuyama T, Takagi M, Hayakawa Y, Seto H (2001) An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp. strain CL190. Proc Natl Acad Sci U S A 98:932–937CrossRefPubMedPubMedCentralGoogle Scholar
  43. Komatsu M, Tsuda M, Omura S, Oikawa H, Ikeda H (2008) Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc Natl Acad Sci U S A 105:7422–7427CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97:13172–13177CrossRefPubMedPubMedCentralGoogle Scholar
  45. Langworthy TA, Pond JL (1986) Archaebacterial ether lipids and chemotaxonomy. Syst Appl Microbiol 7:253–257CrossRefGoogle Scholar
  46. Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 95:9413–9417CrossRefPubMedPubMedCentralGoogle Scholar
  47. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nizet V (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lohr M, Schwender J, Polle JE (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185-186:9–22CrossRefPubMedGoogle Scholar
  49. Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99CrossRefPubMedGoogle Scholar
  50. Lombard J, Lopez-Garcia P, Moreira D (2012) The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 10:507–515PubMedGoogle Scholar
  51. Lynen F (1967) Biosynthetic pathways from acetate to natural products. Pure Appl Chem 14:137–167CrossRefPubMedGoogle Scholar
  52. Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L, Dasika MS, Murarka A, Lenihan J, Eng D, Leng JS, Liu CL, Wenger JW, Jiang H, Chao L, Westfall P, Lai J, Ganesan S, Jackson P, Mans R, Platt D, Reeves CD, Saija PR, Wichmann G, Holmes VF, Benjamin K, Hill PW, Gardner TS, Tsong AE (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–697CrossRefPubMedGoogle Scholar
  53. Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mogi T, Saiki K, Anraku Y (1994) Biosynthesis and functional role of haem O and haem A. Mol Microbiol 14:391–398CrossRefPubMedGoogle Scholar
  55. Nitschke W, Kramer D, Riedel A, Liebl U (1995) From naphtho-to benzoquinones-(r) evolutionary reorganizations of electron transfer chains. Photosynthesis: From Light to Biosphere 1:945–950Google Scholar
  56. Nupur LN, Vats A, Dhanda SK, Raghava GP, Pinnaka AK, Kumar A (2016) ProCarDB: a database of bacterial carotenoids. BMC Microbiol 16:96CrossRefPubMedPubMedCentralGoogle Scholar
  57. O’Brian MR, Thony-Meyer L (2002) Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Adv Microb Physiol 46:257–318CrossRefPubMedGoogle Scholar
  58. Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152CrossRefPubMedGoogle Scholar
  59. Oldfield E, Lin FY (2012) Terpene biosynthesis: modularity rules. Angew Chem Int Ed Engl 51:1124–1137CrossRefPubMedGoogle Scholar
  60. Omer CA, Gibbs JB (1994) Protein prenylation in eukaryotic microorganisms: genetics, biology and biochemistry. Mol Microbiol 11:219–225CrossRefPubMedGoogle Scholar
  61. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367CrossRefPubMedGoogle Scholar
  62. Pan JJ, Solbiati JO, Ramamoorthy G, Hillerich BS, Seidel RD, Cronan JE, Almo SC, Poulter CD (2015) Biosynthesis of Squalene from Farnesyl Diphosphate in bacteria: three steps catalyzed by three enzymes. ACS Cent Sci 1:77–82CrossRefPubMedPubMedCentralGoogle Scholar
  63. Perez-Gil J, Rodriguez-Concepcion M (2013) Metabolic plasticity for isoprenoid biosynthesis in bacteria. Biochem J 452:19–25CrossRefPubMedGoogle Scholar
  64. Perez-Gil J, Calisto BM, Behrendt C, Kurz T, Fita I, Rodriguez-Concepcion M (2012a) Crystal structure of Brucella abortus deoxyxylulose-5-phosphate reductoisomerase-like (DRL) enzyme involved in isoprenoid biosynthesis. J Biol Chem 287:15803–15809CrossRefPubMedPubMedCentralGoogle Scholar
  65. Perez-Gil J, Uros EM, Sauret-Gueto S, Lois LM, Kirby J, Nishimoto M, Baidoo EE, Keasling JD, Boronat A, Rodriguez-Concepcion M (2012b) Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway. PLoS One 7:e43775CrossRefPubMedPubMedCentralGoogle Scholar
  66. Persson BC, Esberg B, Olafsson O, Bjork GR (1994) Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie 76:1152–1160CrossRefPubMedGoogle Scholar
  67. Phillips MA, Leon P, Boronat A, Rodriguez-Concepcion M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623CrossRefPubMedGoogle Scholar
  68. Rodriguez-Concepcion M (2004) The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs. Curr Pharm Des 10:2391–2400CrossRefPubMedGoogle Scholar
  69. Rodriguez-Concepcion M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089CrossRefPubMedGoogle Scholar
  70. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ruch S, Beyer P, Ernst H, Al-Babili S (2005) Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Mol Microbiol 55:1015–1024CrossRefPubMedGoogle Scholar
  72. Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789CrossRefPubMedGoogle Scholar
  73. Saenz JP, Grosser D, Bradley AS, Lagny TJ, Lavrynenko O, Broda M, Simons K (2015) Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc Natl Acad Sci U S A 112:11971–11976CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sangari FJ, Perez-Gil J, Carretero-Paulet L, Garcia-Lobo JM, Rodriguez-Concepcion M (2010) A new family of enzymes catalyzing the first committed step of the methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in bacteria. Proc Natl Acad Sci U S A 107:14081–14086CrossRefPubMedPubMedCentralGoogle Scholar
  75. Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69:585–607CrossRefPubMedPubMedCentralGoogle Scholar
  76. Scherzinger D, Ruch S, Kloer DP, Wilde A, Al-Babili S (2006) Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase. Biochem J 398:361–369CrossRefPubMedPubMedCentralGoogle Scholar
  77. Shrivastava S, Chattopadhyay A (2007) Influence of cholesterol and ergosterol on membrane dynamics using different fluorescent reporter probes. Biochem Biophys Res Commun 356:705–710CrossRefPubMedGoogle Scholar
  78. Sojo V, Pomiankowski A, Lane N (2014) A bioenergetic basis for membrane divergence in archaea and bacteria. PLoS Biol 12:e1001926CrossRefPubMedPubMedCentralGoogle Scholar
  79. Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118CrossRefPubMedPubMedCentralGoogle Scholar
  80. Touz ET, Mengin-Lecreulx D (2008) Undecaprenyl phosphate synthesis. EcoSal Plus 2013; doi: 10.1128/ecosalplus.
  81. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200CrossRefPubMedGoogle Scholar
  82. Vannice JC, Skaff DA, Keightley A, Addo JK, Wyckoff GJ, Miziorko HM (2014) Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway. J Bacteriol 196:1055–1063CrossRefPubMedPubMedCentralGoogle Scholar
  83. Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291CrossRefPubMedGoogle Scholar
  84. Vickers CE, Klein-Marcuschamer D, Kromer JO (2012) Examining the feasibility of bulk commodity production in Escherichia coli. Biotechnol Lett 34:585–596CrossRefPubMedGoogle Scholar
  85. Vickers CE, Behrendorff JBYH, Bongers M, Brennan TCR, Bruschi M, Nielsen LK (2015) Production of industrially relevant Isoprenoid compounds in engineered microbes. In: Kamm B (ed) Microorganisms in biorefineries. Springer, Berlin/Heidelberg, pp 303–334Google Scholar
  86. Vinokur JM, Cummins MC, Korman TP, Bowie JU (2016) An adaptation to life in acid through a novel mevalonate pathway. Sci Rep 6:39737CrossRefPubMedPubMedCentralGoogle Scholar
  87. Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506CrossRefPubMedGoogle Scholar
  88. Warlick BP, Evans BS, Erb TJ, Ramagopal UA, Sriram J, Imker HJ, Sauder JM, Bonanno JB, Burley SK, Tabita FR, Almo SC, Sweedler JS, Gerlt JA (2012) 1-methylthio-D-xylulose 5-phosphate methylsulfurylase: a novel route to 1-deoxy-D-xylulose 5-phosphate in Rhodospirillum rubrum. Biochemistry 51:8324–8326CrossRefPubMedPubMedCentralGoogle Scholar
  89. Weete JD, Abril M, Blackwell M (2010) Phylogenetic distribution of fungal sterols. PLoS One 5:e10899CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wilkins K, Schöller C (2009) Volatile organic metabolites from selected Streptomyces strains. Actinomycetologica 23:27–33CrossRefGoogle Scholar
  91. Yamada Y, Kuzuyama T, Komatsu M, Shin-Ya K, Omura S, Cane DE, Ikeda H (2015) Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci U S A 112:857–862CrossRefPubMedGoogle Scholar
  92. Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S, Nakamura S (2015) Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J Bacteriol 197:1614–1623CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jordi Pérez-Gil
    • 1
    • 2
    Email author
  • Manuel Rodríguez-Concepción
    • 1
  • Claudia E. Vickers
    • 2
    • 3
  1. 1.Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UBBarcelonaSpain
  2. 2.Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneAustralia
  3. 3.Commonwealth Science and Industry Research Organization (CSIRO), Land and Water, EcoSciences PrecinctBrisbaneAustralia

Personalised recommendations