Membrane Homeostasis upon Nutrient (C, N, P) Limitation

  • F. SchubotzEmail author
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Natural environments are dynamic systems where organisms have to constantly acclimate to fluctuations in external conditions, including the bioavailability of essential nutrients carbon (C), nitrogen (N), and phosphorus (P). Membrane lipid plasticity plays an important role to adjust to these environmental challenges by either reducing the cellular need of these macronutrients or to help protect the cell and keep it viable during a prolonged state of reduced energy supply. When P limited, many organisms are able to replace their phospholipids with non-phosphorus containing glycolipids or aminolipids, liberating P for other cellular processes. Under N depletion, a common stress response is the increased production of triacylglycerol (TAG) lipids that serve as energy and carbon storage until nutrients become available again. During severe C starvation, the cell switches to survival mode and membrane lipids are remodeled to conserve energy and stabilize the cell against external stressors, but are also degraded and serve as an endogenous carbon and energy supply. These homeostatic adjustments are found among all domains of life with different specificities and play decisive roles during natural selection of populations in marine and terrestrial ecosystems.



This work was supported in part by the Central Research Development Fund of the University of Bremen, Germany.


  1. Abida H, Dolch L-J, Meï C, Villanova V, Conte M, Block MA, Finazzi G, Bastien O, Tirichine L, Bowler C, Rébeillé F, Petroutsos D, Jouhet J, Maréchal E (2014) Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol 167:118–136CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aguilar-López JL, Funes S (2018) Autophagy in stationary phase of growth. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes, Handbook of hydrocarbon and lipid microbiology. Springer Nature Switzerland AG, pp 1–18Google Scholar
  3. Angkawijaya AE, Nakamura Y (2017) Arabidopsis PECP1 and PS2 are phosphate starvation-inducible phosphocholine phosphatases. Biochem Biophys Res Comm 494:397–401Google Scholar
  4. Bates PD, Browse J (2012) The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci 3:147CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benning C, Beatty JT, Prince RC, Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci USA 90:1561–1565CrossRefPubMedGoogle Scholar
  6. Benning C, Huang ZH, Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317:103–111CrossRefPubMedGoogle Scholar
  7. Bosak T, Schubotz F, de Santiago-Torio A, Kuehl JV, Carlson HK, Watson N, Daye M, Summons RE, Arkin AP, Deutschbauer AM (2016) System-wide adaptations of Desulfovibrio alaskensis G20 to phosphate-limited conditions. PLoS One 11:e0168719CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, Block MA, Maréchal E (2014) Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim Biophys Acta 1837:470–480CrossRefPubMedGoogle Scholar
  9. Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynmics of triacylglycerol accumulation in nine microalgal strains. Bioresour Technol 124:217–226CrossRefPubMedGoogle Scholar
  10. Cañavate JP, Armada I, Hachero-Cruzado I (2016) Interspecific variability in phosphorus-induced lipid remodelling among marine eukaryotic phytoplankton. New Phytol 213:700–713CrossRefPubMedGoogle Scholar
  11. Carini P, Van Mooy BAS, Thrash JC, White A, Zhao Y, Campbell EO, Fredricks HF, Giovannoni SJ (2015) SAR11 lipid renovation in response to phosphate starvation. Proc Natl Acad Sci USA 112:7767–7772CrossRefPubMedGoogle Scholar
  12. Chiou T-J, Lin S-I (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206CrossRefPubMedGoogle Scholar
  13. Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492CrossRefPubMedGoogle Scholar
  14. Degraeve-Guilbault C, Bréhélin C, Haslam R, Sayanova O, Marie-Luce G, Jouhet J, Corellou F (2017) Glycerolipid characterization and nutrient deprivation-associated changes in the green picoalga Ostreococcus tauri. Plant Physiol 173:2060–2080CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dembitsky V (1996) Betaine ether-linked glycerolipids: chemistry and biology. Prog Lipid Res 35:1–51CrossRefPubMedGoogle Scholar
  16. DiRusso CC, Nyström T (1998) The fats of Escherichia coli during infancy and old age: regulation by global regulators, alarmones and lipid intermediates. Mol Microbiol 27:1–8CrossRefPubMedGoogle Scholar
  17. Dowhan W, Bogdanov M, Mileykovskaya E (2016) Functional roles of lipids in membranes. In: Ridgway ND, McLeod RS (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Boston, pp 1–40Google Scholar
  18. Du Z-Y, Benning C (2016) Triacylglycerol accumulation in photosynthetic cells in plants and algae. In: Nakamura Y, Li-Biesson Y (eds) Lipids in plant and algae development. Springer, Cham, pp 179–205CrossRefGoogle Scholar
  19. Elling FJ, Könneke M, Nicol GW, Stieglmeier M, Bayer B, Spieck E, La Torre De JR, Becker KW, Thomm M, Prosser JI, Herndl GJ, Schleper C, Hinrichs K-U (2017) Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ Microbiol 19:2681–2700CrossRefPubMedGoogle Scholar
  20. Essigmann B, Güler S, Narang RA, Linke D, Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95:1950–1955CrossRefPubMedGoogle Scholar
  21. Evans TW, Wörmer L, Lever MA, Lipp JS, Lagostina L, Lin Y-S, Jørgensen BB, Hinrichs K-U (2017) Size and composition of subseafloor microbial community in the Benguela upwelling area examined from intact membrane lipid and DNA analysis. Org Geochem 111:86–100CrossRefGoogle Scholar
  22. Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839CrossRefPubMedGoogle Scholar
  23. Gaude N, Bréhélin C, Tischendorf G, Kessler F, Dörmann P (2007) Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J 49:729–739CrossRefPubMedGoogle Scholar
  24. Geiger O, Röhrs V, Weissenmayer B, Finan TM, Thomas-Oates JE (1999) The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol Microbiol 32:63–73CrossRefPubMedGoogle Scholar
  25. Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C (2010) Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 49:46–60CrossRefPubMedGoogle Scholar
  26. Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization – a review. Soil Biol Biochem 42:2058–2067CrossRefGoogle Scholar
  27. Geske T, vom Dorp K, Dormann P, Holzl G (2012) Accumulation of glycolipids and other nonphosphorous lipids in Agrobacterium tumefaciens grown under phosphate deprivation. Glycobiology 23:69–80CrossRefPubMedGoogle Scholar
  28. Grogan DW, Cronan JE (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441PubMedPubMedCentralGoogle Scholar
  29. Grzymski JJ, Dussaq AM (2011) The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J 6:71–80CrossRefPubMedPubMedCentralGoogle Scholar
  30. Güler S, Seeliger A, Härtel H, Renger G, Benning C (1996) A null mutant of Synechococcus sp. PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271:7501–7507CrossRefPubMedGoogle Scholar
  31. Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Molec Cell Microbiol 19:281–296CrossRefGoogle Scholar
  32. Härtel H, Dormann P, Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97: 10649–10654CrossRefPubMedGoogle Scholar
  33. Hassan M, Blanc PJ, Granger L-M, Pareilleux A (1996) Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochem 31:355–361CrossRefGoogle Scholar
  34. Hayward AP, Dinesh-Kumar SP (2011) What can plant autophagy do for an innate immune response? Annu Rev Phytopathol 49:557–576CrossRefPubMedGoogle Scholar
  35. Heath RJ, Rock CO (1996) Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J Biol Chem 271:1833–1836CrossRefPubMedGoogle Scholar
  36. Hiraoka S, Matsuzaki H, Shibuya I (1993) Active increase in cardiolipin synthesis in the stationary phase growth phase and its physiological significance in Escherichia coli. FEBS Lett 336:221–224CrossRefPubMedGoogle Scholar
  37. Hölzl G, Zähringer U, Warnecke D, Heinz E (2005) Glycoengineering of cyanobacterial thylakoid membranes for future studies on the role of glycolipids in photosynthesis. Plant Cell Physiol 46:1766–1778Google Scholar
  38. Hölzl G, Dörmann P (2007) Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res 46:225–243CrossRefPubMedGoogle Scholar
  39. Hood MA, Guckert JB, White DC, Deck F (1986) Effects of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl Environ Microbiol 52:788–793PubMedPubMedCentralGoogle Scholar
  40. Houser JR, Barnhart C, Boutz DR, Carroll SM, Dasgupta A, Michener JK, Needham BD, Papoulas O, Sridhara V, Sydykova DK, Marx CJ, Trent MS, Barrick JE, Marcotte EM, Wilke CO (2015) Controlled measurement and comparative analysis of cellular components in E. coli reveals broad regulatory changes in response to glucose starvation. PLoS Comput Biol 11:e1004400CrossRefPubMedPubMedCentralGoogle Scholar
  41. Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its application towards the production of fatty acid based biofuels. Biotechnol Biofuels 7:7CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jørgensen BB, Marshall IPG (2016) Slow microbial life in the seabed. Ann Rev Mar Sci 8:311–332CrossRefPubMedGoogle Scholar
  43. Journet EP, Bligny R, Douce R (1986) Biochemical changes during sucrose deprivation in higher plant cells. J Biol Chem 261:3193–3199PubMedGoogle Scholar
  44. Kalisch B, Dörmann P, Hölzl G (2016) DGDG and glycolipids in plants and algae. In: Nakamura Y, Li-Biesson Y (eds) Lipids in plant and algae development. Springer, Cham, pp 51–83CrossRefGoogle Scholar
  45. Karl DM (2014) Microbially mediated transformations of phosphorus in the sea: new views of an old cycle. Ann Rev Mar Sci 6:279–337CrossRefPubMedGoogle Scholar
  46. Kelly AA, Kalisch B, Hölzl G, Schulze S, Thiele J, Melzer M, Roston RL, Benning C, Dörmann P (2016) Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana. Proc Natl Acad Sci USA 113:10714–10719CrossRefPubMedGoogle Scholar
  47. Kjelleberg S, Hermansson M, Mårdén P, Jones GW (1987) The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol 41:25–49CrossRefPubMedGoogle Scholar
  48. Koga Y, Nakano M (2008) A dendrogram of archaea based on lipid component parts composition and its relationship to rRNA phylogeny. Syst Appl Microbiol 31:169–182CrossRefPubMedGoogle Scholar
  49. Lee SH, Chae HS, Lee TK, Kim SH, Shin SH, Cho BH, Cho SH, Kang BG, Lee WS (1998) Ethylene-mediated phospholipid catabolic pathway in glucose-starved carrot suspension cells. Plant Physiol 116:223–229CrossRefGoogle Scholar
  50. López-Lara IM, Geiger O (2016) Bacterial lipid diversity. Biochim Biophys Acta 1862:1287–1299CrossRefPubMedGoogle Scholar
  51. López-Lara IM, Gao J-L, Soto MJ, Solares-Pérez A, Weissenmayer B, Sohlenkamp C, Verroios GP, Thomas-Oates J, Geiger O (2005) Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with Alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. Mol Plant Microbe Interact 18:973–982CrossRefPubMedGoogle Scholar
  52. Martin P, Van Mooy BA, Heithoff A, Dyhrman ST (2010) Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME J 5:1057–1060CrossRefPubMedPubMedCentralGoogle Scholar
  53. Meador TB, Gagen EJ, Loscar ME, Goldhammer T, Yoshinaga MY, Wendt J, Thomm M, Hinrichs K-U (2014) Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability. Front Microbiol 5:10CrossRefPubMedPubMedCentralGoogle Scholar
  54. Minnikin DE, Abdolrahimzadeh H, Baddiley J (1971) The interrelation of polar lipids in bacterial membranes. Biochim Biophys Acta 249:651–655Google Scholar
  55. Moellering ER, Benning C (2011) Galactoglycerolipid metabolism under stress: a time for remodeling. Trends Plant Sci 16:98–107CrossRefPubMedGoogle Scholar
  56. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL, Jickells TD, La Roche J, Lenton TM, Mahowald NM, Maranon E, Marinov I, Moore JK, Nakatsuka T, Oschlies A, Saito MA, Thingstad TF, Tsuda A, Ulloa O (2013) Processes and patterns of oceanic nutrient limitation. Nat Geosci 6:701–710CrossRefGoogle Scholar
  57. Mühlroth A, Winge P, Assimi El A, Jouhet J, Maréchal E, Hohmann-Marriott MF, Vadstein O, Bones AM (2017) Mechanisms of phosphorus acquisition and lipid class remodeling under P limitation in a marine microalga. Plant Physiol 175:1543–1559CrossRefPubMedPubMedCentralGoogle Scholar
  58. My L, Ghandour Achkar N, Viala JP, Bouveret E (2015) Reassessment of the genetic regulation of fatty acid synthesis in Escherichia coli: global positive control by the functional dual regulator FadR. J Bacteriol 197:1862–1872CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nakamura Y (2013) Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 52:43–50CrossRefPubMedGoogle Scholar
  60. Nyström T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181CrossRefPubMedGoogle Scholar
  61. Okazaki Y, Nishizawa T, Takano K, Ohnishi M, Mimura T, Saito K (2015) Induced accumulation of glucuronosyldiacylglycerol in tomato and soybean under phosphorus deprivation. Physiol Plant 155:33–42CrossRefPubMedGoogle Scholar
  62. Parsons JB, Rock CO (2013) Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 52:249–276CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pech-Canul À, Nogales J, Miranda-Molina A, Àlvarez L, Geiger O, Soto MJ, López-Lara IM (2011) FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 193:6295–6304CrossRefPubMedPubMedCentralGoogle Scholar
  64. Petrie JR, Vanhercke T, Shrestha P, Tahchy El A, White A, Zhou X-R, Liu Q, Mansour MP, Nichols PD, Singh SP (2012) Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway. PLoS One 7:e35214CrossRefPubMedPubMedCentralGoogle Scholar
  65. Poirier Y, Thoma S, Somerville C, Schiefelbein J (1991) Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97:1087–1093CrossRefPubMedPubMedCentralGoogle Scholar
  66. Popko J, Herrfurth C, Feussner K, Ischebeck T, Iven T, Haslam R, Hamilton M, Sayanova O, Napier J, Khozin-Goldberg I, Feussner I (2016) Metabolome analysis reveals betaine lipids as major source for triglyceride formation, and the accumulation of sedoheptulose during nitrogen-starvation of Phaeodactylum tricornutum. PLoS One 11:e0164673CrossRefPubMedPubMedCentralGoogle Scholar
  67. Riekhof WR, Naik S, Bertrand H, Benning C, Voelker DR (2014) Phosphate starvation in fungi induces the replacement of phosphatidylcholine with the phosphorus-free betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Eukar Cell 13:749–757CrossRefGoogle Scholar
  68. Rühl M, Le Coq D, Aymerich S, Sauer U (2012) 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis. J Biol Chem 287:27959–27970CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ruttenberg KC (2014) The global phosphorus cycle. In: Karl DM, Schlesinger WH (eds) Treatise on Geochem, 2nd edn, Vol. 10, Biogeochem. Elsevier, Oxford, UK, pp 499–558Google Scholar
  70. Sato N, Hagio M, Wada H, Tsuzuki M (2000) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci USA 97:10655–10660CrossRefPubMedGoogle Scholar
  71. Schubotz F, Wakeham SG, Lipp JS, Fredricks HF, Hinrichs K-U (2009) Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea. Environ Microbiol 11:2720–2734CrossRefPubMedGoogle Scholar
  72. Sebastian M, Smith AF, González JM, Fredricks HF, Van Mooy B, Koblížek M, Brandsma J, Koster G, Mestre M, Mostajir B, Pitta P, Postle AD, Sánchez P, Gasol JM, Scanlan DJ, Chen Y (2016) Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. ISME J 10:968–978CrossRefPubMedGoogle Scholar
  73. Semeniuk A, Sohlenkamp C, Duda K, Holzl G (2014) A bifunctional glycosyltransferase from Agrobacterium tumefaciens synthesizes monoglucosyl and glucuronosyl diacylglycerol under phosphate deprivation. J Biol Chem 14:10104–10114CrossRefGoogle Scholar
  74. Senik SV, Maloshenok LG, Kotlova ER, Shavarda AL, Moiseenko KV, Bruskin SA, Koroleva OV, Psurtseva NV (2015) Diacylglyceryltrimethylhomoserine content and gene expression changes triggered by phosphate deprivation in the mycelium of the basidomycete Flammulina velutipes. Phytochemistry 117:34–42CrossRefPubMedGoogle Scholar
  75. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553CrossRefGoogle Scholar
  76. Shemi A, Schatz D, Fredricks HF, Van Mooy BAS, Porat Z, Vardi A (2016) Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi. New Phytol 211:886–898CrossRefPubMedGoogle Scholar
  77. Siebers M, Dörmann P, Hölzl G (2015) Membrane remodelling in phosphorus-deficient plants. In: Plaxton WC, Lambers H (eds) Annu plant rev vol 48: phosphorus metabolism in plants, 1st edn. Wiley, Chichester, pp 237–263CrossRefGoogle Scholar
  78. Slávikova S, Shy G, Yao Y, Glozman R, Levanony H, Pietrokosvski S, Elazar Z, Galili G (2005) The autophagy-associated Atg8 gene family operates both under favourable growth coniditions and under starvation stresses in Arabidopsis plants. J Exp Bot 56:2839–2849CrossRefPubMedGoogle Scholar
  79. Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Valentine DL, Hinrichs K-U, Jensen GJ, Dubilier N, Orphan VJ (2016) Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti. Mol Microbiol 103:242–252CrossRefPubMedGoogle Scholar
  80. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Microbiol 5:316–323CrossRefPubMedGoogle Scholar
  81. Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci USA 103:8607–8612CrossRefPubMedGoogle Scholar
  82. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappé MS, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72CrossRefPubMedGoogle Scholar
  83. Vanderwinkel E, Dee Vliegher M, Fontaine M, Charles D, Denamur F, Vandervoorde D, De Kegel D (1976) Septation deficiency and phospholipid pertubation in Escherichia coli genetically constitutive for the beta oxidation pathway. J Bacteriol 127:1389–1399PubMedPubMedCentralGoogle Scholar
  84. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109CrossRefPubMedGoogle Scholar
  85. Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182CrossRefPubMedGoogle Scholar
  86. Yao M, Elling FJ, Jones C, Nomosatryo S, Long CP, Crowe SA, Antoniewicz MR, Hinrichs K-U, Maresca JA (2015) Heterotrophic bacteria from an extremely phosphate-poor lake have conditionally reduced phosphorus demand and utilize diverse sources of phosphorus. Environ Microbiol 18:656–667CrossRefPubMedPubMedCentralGoogle Scholar
  87. Yoon K, Han D, Li Y, Sommerfeld M, Hu Q (2012) Phospholipid: diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell 24:3708–3724CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yu SM (1999) Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121:687–693CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zavaleta-Pastor M, Sohlenkamp C, Gao JL, Guan Z, Zaheer R, Finan TM, Raetz CRH, López-Lara IM, Geiger O (2010) Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. Proc Natl Acad Sci USA 107:302–307CrossRefPubMedGoogle Scholar
  90. Zhang Y-M, Rock CO (2016) Fatty acid and phospholipid biosynthesis in prokaryotes. In: Ridgway ND, McLeod RS (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam, pp 73–112CrossRefGoogle Scholar
  91. Zienkiewicz K, Du Z-Y, Ma W, Vollheyde K, Benning C (2016) Stress-induced neutreal lipid biosynthesis in microalga – molecular cellular and phyisological insights. Biochim Biophys Acta 1861:1269–1281CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.MARUM and Department of GeosciencesUniversity of BremenBremenGermany

Personalised recommendations