Advertisement

Structure:Function of Transmembrane Appendages in Gram-Negative Bacteria

  • Miguel Ángel Díaz-Guerrero
  • Meztlli O. Gaytán
  • Bertha González-Pedrajo
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Gram-negative bacteria possess diverse transmembrane appendages that allow them to colonize different ecological niches. An essential prokaryotic strategy used for adaptation to various environments is the secretion of several molecules such as proteins and DNA, which is accomplished by specialized secretion systems that enable substrate transport across the cell envelope. Moreover, bacterial motility and adherence, driven by filamentous surface structures as flagella, pili, and curli, also play a crucial role in bacterial colonization. The construction of these macromolecular complexes faces a physical barrier since they must traverse two distinct lipid membrane bilayers and a peptidoglycan cell wall. Therefore, proteins that display special physicochemical characteristics to assemble within the hydrophobic lipid environment serve as building blocks for the biogenesis of the different transmembrane appendages. Here, we review the architecture and function of the main appendages of diderm bacteria and discuss how the interplay between membrane lipids and proteins influences their assembly and activity.

Notes

Acknowledgments

Work in our laboratory is supported by grants from Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (DGAPA, UNAM; PAPIIT IN209617) and Consejo Nacional de Ciencia y Tecnología (CONACyT 284081). We acknowledge Dra. Norma Espinosa Sánchez for critical reading of the manuscript and excellent technical assistance.

References

  1. Aas FE, Egge-Jacobsen W, Winther-Larsen HC, Lovold C, Hitchen PG, Dell A, Koomey M (2006) Neisseria gonorrhoeae type IV pili undergo multisite, hierarchical modifications with phosphoethanolamine and phosphocholine requiring an enzyme structurally related to lipopolysaccharide phosphoethanolamine transferases. J Biol Chem 281:27712–27723CrossRefGoogle Scholar
  2. Ahn T, Kim H (1998) Effects of nonlamellar-prone lipids on the ATPase activity of SecA bound to model membranes. J Biol Chem 273:21692–21698CrossRefGoogle Scholar
  3. Albenne C, Ieva R (2017) Job contenders: roles of the beta-barrel assembly machinery and the translocation and assembly module in autotransporter secretion. Mol Microbiol 106:505–517CrossRefGoogle Scholar
  4. Alteri CJ, Mobley HL (2016) The versatile type VI secretion system. Microbiol Spectr 4.  https://doi.org/10.1128/microbiolspec.VMBF-0026-2015
  5. Anne J, Economou A, Bernaerts K (2017) Protein secretion in Gram-positive Bacteria: from multiple pathways to biotechnology. Curr Top Microbiol Immunol 404:267–308PubMedGoogle Scholar
  6. Auvray F, Ozin AJ, Claret L, Hughes C (2002) Intrinsic membrane targeting of the flagellar export ATPase FliI: interaction with acidic phospholipids and FliH. J Mol Biol 318:941–950CrossRefGoogle Scholar
  7. Brehmer T, Kerth A, Graubner W, Malesevic M, Hou B, Bruser T, Blume A (2012) Negatively charged phospholipids trigger the interaction of a bacterial Tat substrate precursor protein with lipid monolayers. Langmuir 28:3534–3541CrossRefGoogle Scholar
  8. Breukink E, Demel RA, de Korte-Kool G, de Kruijff B (1992) SecA insertion into phospholipids is stimulated by negatively charged lipids and inhibited by ATP: a monolayer study. Biochemistry 31:1119–1124CrossRefGoogle Scholar
  9. Camberg JL, Johnson TL, Patrick M, Abendroth J, Hol WG, Sandkvist M (2007) Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J 26:19–27CrossRefGoogle Scholar
  10. Cao B, Zhao Y, Kou Y, Ni D, Zhang XC, Huang Y (2014) Structure of the nonameric bacterial amyloid secretion channel. Proc Natl Acad Sci U S A 111:E5439–E5444CrossRefGoogle Scholar
  11. Chamot-Rooke J, Mikaty G, Malosse C, Soyer M, Dumont A, Gault J, Imhaus AF, Martin P, Trellet M, Clary G, Chafey P, Camoin L, Nilges M, Nassif X, Dumenil G (2011) Posttranslational modification of pili upon cell contact triggers N. meningitidis dissemination. Science 331:778–782CrossRefGoogle Scholar
  12. Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, Waksman G (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462:1011–1015CrossRefGoogle Scholar
  13. Cianfanelli FR, Monlezun L, Coulthurst SJ (2016) Aim, load, fire: the type VI secretion system, a bacterial Nanoweapon. Trends Microbiol 24:51–62CrossRefGoogle Scholar
  14. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359CrossRefGoogle Scholar
  15. Costa TRD, Ilangovan A, Ukleja M, Redzej A, Santini JM, Smith TK, Egelman EH, Waksman G (2016) Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166(1436–1444):e1410Google Scholar
  16. Cullen TW, Trent MS (2010) A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni. Proc Natl Acad Sci U S A 107:5160–5165CrossRefGoogle Scholar
  17. Cullen TW, Madsen JA, Ivanov PL, Brodbelt JS, Trent MS (2012) Characterization of unique modification of flagellar rod protein FlgG by Campylobacter jejuni lipid A phosphoethanolamine transferase, linking bacterial locomotion and antimicrobial peptide resistance. J Biol Chem 287:3326–3336CrossRefGoogle Scholar
  18. Dalbey RE, Kuhn A (2012) Protein traffic in Gram-negative bacteria – how exported and secreted proteins find their way. FEMS Microbiol Rev 36:1023–1045CrossRefGoogle Scholar
  19. Dalbey RE, Wang P, Kuhn A (2011) Assembly of bacterial inner membrane proteins. Annu Rev Biochem 80:161–187CrossRefGoogle Scholar
  20. Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ, Santos AS, Strynadka NCJ, Finlay BB (2017) Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 15:323–337CrossRefGoogle Scholar
  21. Diepold A, Armitage JP (2015) Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond Ser B Biol Sci 370.  https://doi.org/10.1098/rstb.2015.0020
  22. Erhardt M, Namba K, Hughes KT (2010) Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect Biol 2.  https://doi.org/10.1101/cshperspect.a000299
  23. Evans ML, Chapman MR (2014) Curli biogenesis: order out of disorder. Biochim Biophys Acta 1843:1551–1558CrossRefGoogle Scholar
  24. Fan E, Chauhan N, Udatha DB, Leo JC, Linke D (2016) Type V secretion systems in bacteria. Microbiol Spectr 4.  https://doi.org/10.1128/microbiolspec.VMBF-0009-2015
  25. Filloux A, Voulhoux R (2018) Multiple structures disclose the Secretins’ secrets. J Bacteriol 200.  https://doi.org/10.1128/JB.00702-17
  26. Fronzes R, Remaut H, Waksman G (2008) Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J 27:2271–2280CrossRefGoogle Scholar
  27. Galan JE, Waksman G (2018) Protein-injection machines in bacteria. Cell 172:1306–1318CrossRefGoogle Scholar
  28. Gallique M, Bouteiller M, Merieau A (2017) The type VI secretion system: a dynamic system for bacterial communication? Front Microbiol 8:1454CrossRefGoogle Scholar
  29. Gaytan MO, Martinez-Santos VI, Soto E, Gonzalez-Pedrajo B (2016) Type three secretion system in attaching and effacing pathogens. Front Cell Infect Microbiol 6:129CrossRefGoogle Scholar
  30. Gold V, Kudryashev M (2016) Recent progress in structure and dynamics of dual-membrane-spanning bacterial nanomachines. Curr Opin Struct Biol 39:1–7CrossRefGoogle Scholar
  31. Gold VA, Robson A, Bao H, Romantsov T, Duong F, Collinson I (2010) The action of cardiolipin on the bacterial translocon. Proc Natl Acad Sci U S A 107:10044–10049CrossRefGoogle Scholar
  32. Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectr 4.  https://doi.org/10.1128/microbiolspec.VMBF-0012-2015
  33. Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 107:455–471CrossRefGoogle Scholar
  34. Holland IB, Schmitt L, Young J (2005) Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol 22:29–39CrossRefGoogle Scholar
  35. Hospenthal MK, Costa TRD, Waksman G (2017) A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat Rev Microbiol 15:365–379CrossRefGoogle Scholar
  36. Jarrell KF, Ding Y, Nair DB, Siu S (2013) Surface appendages of archaea: structure, function, genetics and assembly. Life (Basel) 3:86–117Google Scholar
  37. Koo J, Lamers RP, Rubinstein JL, Burrows LL, Howell PL (2016) Structure of the Pseudomonas aeruginosa Type IVa pilus secretin at 7.4 A. Structure 24:1778–1787CrossRefGoogle Scholar
  38. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919CrossRefGoogle Scholar
  39. Korotkov KV, Sandkvist M, Hol WG (2012) The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10:336–351CrossRefGoogle Scholar
  40. Krause S, Pansegrau W, Lurz R, de la Cruz F, Lanka E (2000) Enzymology of type IV macromolecule secretion systems: the conjugative transfer regions of plasmids RP4 and R388 and the cag pathogenicity island of Helicobacter pylori encode structurally and functionally related nucleoside triphosphate hydrolases. J Bacteriol 182:2761–2770CrossRefGoogle Scholar
  41. Lill R, Dowhan W, Wickner W (1990) The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60:271–280CrossRefGoogle Scholar
  42. Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S, Dujeancourt A, Lu F, Redzej A, Fronzes R, Orlova EV, Waksman G (2014) Structure of a type IV secretion system. Nature 508:550–553CrossRefGoogle Scholar
  43. Minamino T (2014) Protein export through the bacterial flagellar type III export pathway. Biochim Biophys Acta 1843:1642–1648CrossRefGoogle Scholar
  44. Pansegrau W, Bagnoli F (2017) Pilus assembly in gram-positive bacteria. Curr Top Microbiol Immunol 404:203–233PubMedGoogle Scholar
  45. Patel R, Smith SM, Robinson C (2014) Protein transport by the bacterial Tat pathway. Biochim Biophys Acta 1843:1620–1628CrossRefGoogle Scholar
  46. Phoenix DA, Kusters R, Hikita C, Mizushima S, de Kruijff B (1993) OmpF-Lpp signal sequence mutants with varying charge hydrophobicity ratios provide evidence for a phosphatidylglycerol-signal sequence interaction during protein translocation across the Escherichia coli inner membrane. J Biol Chem 268:17069–17073PubMedGoogle Scholar
  47. Prabudiansyah I, Kusters I, Caforio A, Driessen AJ (2015) Characterization of the annular lipid shell of the Sec translocon. Biochim Biophys Acta 1848:2050–2056CrossRefGoogle Scholar
  48. Rivera-Calzada A, Fronzes R, Savva CG, Chandran V, Lian PW, Laeremans T, Pardon E, Steyaert J, Remaut H, Waksman G, Orlova EV (2013) Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO J 32:1195–1204CrossRefGoogle Scholar
  49. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414CrossRefGoogle Scholar
  50. Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159CrossRefGoogle Scholar
  51. Thomas S, Holland IB, Schmitt L (2014) The Type 1 secretion pathway – the hemolysin system and beyond. Biochim Biophys Acta 1843:1629–1641CrossRefGoogle Scholar
  52. Thomassin JL, Santos Moreno J, Guilvout I, Tran Van Nhieu G, Francetic O (2017) The trans-envelope architecture and function of the type 2 secretion system: new insights raising new questions. Mol Microbiol 105:211–226CrossRefGoogle Scholar
  53. Tsirigotaki A, De Geyter J, Šoštaric N, Economou A, Karamanou S (2016) Protein export through the bacterial Sec pathway. Nat Rev Microbiol 15:21CrossRefGoogle Scholar
  54. Ulbrandt ND, London E, Oliver DB (1992) Deep penetration of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding. J Biol Chem 267:15184–15192PubMedGoogle Scholar
  55. Van Gerven N, Waksman G, Remaut H (2011) Pili and flagella biology, structure, and biotechnological applications. Prog Mol Biol Transl Sci 103:21–72CrossRefGoogle Scholar
  56. Van Gerven N, Klein RD, Hultgren SJ, Remaut H (2015) Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 23:693–706CrossRefGoogle Scholar
  57. Weise CF, Login FH, Ho O, Grobner G, Wolf-Watz H, Wolf-Watz M (2014) Negatively charged lipid membranes promote a disorder-order transition in the Yersinia YscU protein. Biophys J 107:1950–1961CrossRefGoogle Scholar
  58. Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JRC, Majewski DD, Huang RK, Spreter T, Finlay BB, Yu Z, Strynadka NCJ (2016) Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body. Nature 540:597CrossRefGoogle Scholar
  59. Yan Z, Yin M, Xu D, Zhu Y, Li X (2017) Structural insights into the secretin translocation channel in the type II secretion system. Nat Struct Mol Biol 24:177–183CrossRefGoogle Scholar
  60. Zilkenat S, Franz-Wachtel M, Stierhof YD, Galan JE, Macek B, Wagner S (2016) Determination of the stoichiometry of the complete bacterial type III secretion needle complex using a combined quantitative proteomic approach. Mol Cell Proteomics 15:1598–1609CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Miguel Ángel Díaz-Guerrero
    • 1
  • Meztlli O. Gaytán
    • 1
  • Bertha González-Pedrajo
    • 1
  1. 1.Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations