Advertisement

Storage of Hydrophobic Polymers in Bacteria

  • Luísa S. Serafim
  • Ana M. R. B. Xavier
  • Paulo C. Lemos
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The accumulation of storage reserves is broadly spread in nature, and among the different compounds stored, carbohydrates and lipids are the most common and important. The accumulation of storage compounds in inclusion bodies is a strategy that allows the survival of microorganisms in different environments since most of these compounds act as element and/or energy sources. A variety of storage reserves is known and among lipids, polyhydroxyalkanoates (PHAs), triacylglycerols (TAGs), and wax esters (WEs) are the most important. These carbon-based internal reserves gained importance in the last years due to the possibility of using them as substitutes of materials and fuels usually obtained from mineral oil. For this reason, the knowledge about the microorganisms that store them, the metabolic routes involved on their formation, and the process conditions that allow their efficient production were subject of many scientific works and constitute the main topic of the present chapter.

Notes

Acknowledgments

This work was financed by Fundação para a Ciência e a Tecnologia through IF/01054/2014. This work was also developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. This work was also supported by the Associate Laboratory for Green Chemistry- LAQV which is financed by national funds from FCT/MCTES (UID/QUI/50006/2013) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER – 007265).

References

  1. Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130:411–421CrossRefPubMedGoogle Scholar
  2. Albuquerque MGE, Martino V, Pollet E, Avérous L, Reis MAM (2011) Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotech 151:66–76Google Scholar
  3. Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376CrossRefPubMedGoogle Scholar
  4. Alvarez HM, Steinbüchel A (2010) Physiology biochemistry and molecular biology of triacylglycerol accumulation by Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus, Microbiology monographs series. Springer, Heidelberg, pp 263–290CrossRefGoogle Scholar
  5. Alvarez HM, Silva RA, Herrero M, Hernández MA, Villalba MS (2012) Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J Mol Biochem 2:69–78Google Scholar
  6. Alvarez HM (2016) Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie 120:28–39CrossRefPubMedGoogle Scholar
  7. Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD (2016) Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci Rep 6:24985CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bacon J, Dover LG, Hatch KA, Zhang Y, Gomes JM, Kendall S, Wernisch L, Stoker NG, Butcher PD, Besra GS, Marsh PD (2007) Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under iron-limitation in continuous culture: identification of a novel wax ester. Microbiology 153:1435–1444CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bengtsson S, Werker A, Christensson M, Welander T (2008) Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour Technol 99:509–516CrossRefPubMedGoogle Scholar
  10. Bergersen FJ, Peoples MB, Turner GL (1991) A role for poly-beta-hydroxybutyrate in bacteroids of soybean root nodules. Proc R Soc Lond 245:59–64CrossRefGoogle Scholar
  11. Berlanga M, Miñana-Galbis D, Domènech O, Guerrero R (2015) Enhanced polyhydroxyalkanoates accumulation by Halomonas spp. in artificial biofilms of alginate beads. Int Microbiol 15:191–199Google Scholar
  12. Brämer CO, Vandamme P, da Silva LF, Gomez JGC, Steinbüchel (2001) Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int J Syst Evol Microbiol 51:1709–1713CrossRefPubMedGoogle Scholar
  13. Brigham CJ, Kurosawa K, Rha C, Sinskey AJ (2013) Bacterial carbon storage to value added products. J Microbial Biochem Technol S3:002:2–13Google Scholar
  14. Bugnicourt E, Cinelli P, Lazzeri P, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808CrossRefGoogle Scholar
  15. Carvalho G, Oehmen A, Albuquerque MGE, Reis MAM (2014) The relationship between mixed microbial culture composition and PHA production performance from fermented molasses. New Biotechnol 31:257–263CrossRefGoogle Scholar
  16. Chen G-Q, Hajnal I (2015) The ‘PHAome’. Trends Biotechnol 33:559–564CrossRefPubMedGoogle Scholar
  17. Coats ER, Loge FJ, Smith W, Thompson DN, Wolcott MP (2007) Functional stability of a mixed microbial consortium producing PHA from waste carbon sources. Appl Biochem Biotechnol 137:909–925PubMedGoogle Scholar
  18. Da Silva DMP, Lima F, Alves MM, Bijmans MFM, Pereira MA (2016) Valorization of lubricant-based wastewater for bacterial neutral lipids production: growth-linked biosynthesis. Water Res 101:17–24CrossRefPubMedGoogle Scholar
  19. Dahlqvist A, Stähl U, Lanman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 12:6487–6492CrossRefGoogle Scholar
  20. Daigger GT, Grady CPL (1982) An assessment of the role of physiological adaptation in the transient-response of bacterial cultures. Biotechnol Bioeng 24:1427–1444CrossRefPubMedGoogle Scholar
  21. Dionisi D, Majone M, Papa V, Beccari M (2004) Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol Bioeng 85:569–579CrossRefPubMedGoogle Scholar
  22. Dionisi D, Carucci G, Petrangeli Papini M, Riccardi C, Majone M, Carrasco F (2005) Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res 39:2076–2084CrossRefPubMedGoogle Scholar
  23. Revellame ED, Hernandez R, French WT, Holmes WE, Forks A, Callahan R II (2013) Lipid-enhancement of activated sludges obtained from conventional activated sludge and oxidation ditch processes. Bioresour Technol 148:487–493CrossRefPubMedGoogle Scholar
  24. Encarnación S, Vargas MC, Dunn MF, Davalos A, Mendoza G, Mora Y, Mora J (2002) AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli. J Bacteriol 184:2287–2295CrossRefPubMedPubMedCentralGoogle Scholar
  25. Freches A, Lemos PC (2017) Microbial selection strategies for polyhydroxyalkanoates production from crude glycerol: effect of OLR and cycle length. New Biotechnol 39:22–28CrossRefGoogle Scholar
  26. Hauschild P, Röttig A, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A (2017) Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol 101:2203–2216CrossRefPubMedGoogle Scholar
  27. Hernández MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM (2015) Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol 99:2191–2207CrossRefPubMedGoogle Scholar
  28. Holdren JP (2011) Materials genome initiative for global competitiveness. National Science and Technology Council OSTP, Washington, DCGoogle Scholar
  29. Ishige T, Tani A, Sakai Y, Kato N (2003) Wax ester production by bacteria. Curr Opin Microbiol 6:244–250CrossRefPubMedGoogle Scholar
  30. Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373CrossRefPubMedGoogle Scholar
  31. Jiang Y, Marang L, Tamis J, van Loosdrecht MCM, Dijkman H, Kleerebezem R (2012) Waste to resource: converting paper mill wastewater to bioplastic. Water Res 46:5517–5530CrossRefPubMedGoogle Scholar
  32. Kaddor C, Biermann K, Kalscheuer R, Steinbüchel A (2009) Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein. Appl Microbiol Biotechnol 84:143–155CrossRefPubMedGoogle Scholar
  33. Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928CrossRefPubMedGoogle Scholar
  34. Khosravi-Darani K, Mokhtari Z-B, Amai T, Tanaka K (2013) Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97:1407–1424CrossRefPubMedGoogle Scholar
  35. Koller M, Gasser I, Schimd F, Berg G (2011) Linking ecology with economy: insights into polyhydroxyalkanoate-producing microorganisms. Eng Life Sci 11:222–237CrossRefGoogle Scholar
  36. Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:55CrossRefPubMedCentralGoogle Scholar
  37. Kurosawa K, Wewetzer SJ, Sinskey AJ (2013) Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels 6:134CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kurosawa K, Wewetzer SJ, Sinskey AJ (2014) Triacylglycerol production from corn Stover using a xylose-fermenting Rhodococcus opacus strain for lignocellulosic biofuels. J Microbial Biochem Technol 6:254–259CrossRefGoogle Scholar
  39. Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583CrossRefGoogle Scholar
  40. Li S, Cai L, Wu L, Zeng G, Chen J, Wu Q, Chen C-Q (2014) Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by β-oxidation deleted Pseudomonas entomophila. Biomacromolecules 15:2310–2319CrossRefPubMedGoogle Scholar
  41. López NI, Pettinari MJ, Nikel PI, Méndez BS (2015) Polyhydroxyalkanoates: much more than biodegradable plastics. Adv Appl Biotechnol 93:73–106Google Scholar
  42. Magdouli S, Brar SK, Blais JF, Tyagi RD (2015) How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production? Biomass Bioenergy 74:268–279CrossRefGoogle Scholar
  43. Majone M, Massanisso P, Carucci A, Lindrea K, Tandoi V (1996) Influence of storage on kinetic selection to control aerobic filamentous bulking. Water Sci Technol 34(223–2):32Google Scholar
  44. Mohd MF, Mohanadoss P, Ujang Z, van Loosdrecht M, Yunus SM, Chelliapan S, Zambare V, Olsson G (2012) Development of Bio-PORec system for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME). Bioresour Technol 124:208–216CrossRefGoogle Scholar
  45. Moita R, Lemos PC (2012) Biopolymers production from mixed cultures and pyrolysis by-products. J Biotechnol 157:578–583CrossRefPubMedGoogle Scholar
  46. Moita R, Freches A, Lemos PC (2014) Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res 58:9–20CrossRefPubMedGoogle Scholar
  47. Mozejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282CrossRefPubMedGoogle Scholar
  48. Mukai K, Yamada K, Doi Y (1994) Efficient hydrolysis of polyhydroxyalkanoates by Pseudomonas stutzeri YM1414 isolated from lake water. Polym Degrad Stab 43:319–327CrossRefGoogle Scholar
  49. Muller EEL, Sheik AR, Wilmes P (2014) Lipid-based biofuel production from wastewater. Curr Opin Biotechnol 30:9–16CrossRefPubMedGoogle Scholar
  50. Murphy DJ (1993) Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog Lipid Res 32:247–280CrossRefPubMedGoogle Scholar
  51. Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I (2018) Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv 36:856 (in press)CrossRefPubMedGoogle Scholar
  52. Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, Blackall LL, Reis MAM (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41:2271–2300CrossRefPubMedGoogle Scholar
  53. Pereira H, Lemos PC, Reis MAM, Crespo JPSG, Carrondo MJT, Santos H (1996) Model for carbon metabolism in biological phosphorus removal processes based on in vivo 13C-NMR labelling experiments. Water Res 30:2128–2138CrossRefGoogle Scholar
  54. Pisco AR, Bengtsson S, Werker A, Reis MAM, Lemos PC (2009) Community structure evolution and enrichment of glycogen-accumulating organisms producing polyhydroxyalkanoates from fermented molasses. Appl Environ Microbiol 75:4676–4686CrossRefPubMedPubMedCentralGoogle Scholar
  55. Qadeer S, Khalid A, Mahmood S, Anjum M, Ahmad Z (2017) Utilizing oleaginous bacteria and fungi for cleaner energy production. J Clean Prod 168:917–928CrossRefGoogle Scholar
  56. Queirós D, Rossetti S, Serafim LS (2014) PHA production by mixed cultures: a way to valorize wastes from pulp industry. Bioresour Technol 157:197–205CrossRefPubMedGoogle Scholar
  57. Queirós D, Lemos PC, Rossetti S, Serafim LS (2015) Unveiling PHA-storing populations using molecular methods. Appl Microbiol Biotechnol 99:10433–10446CrossRefPubMedGoogle Scholar
  58. Quillaguamán J, Hashim S, Bento F, Mattiasson B, Hatti-Kaul R (2005) Poly(b-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99:151–157CrossRefPubMedGoogle Scholar
  59. Quillaguamán J, Guzmán H, Doan Van T, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696CrossRefPubMedGoogle Scholar
  60. Rae BD, Long BM, Murray RB, Price GD (2013) Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 77:357–379CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rehm B (2006) Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: the key role of polyester synthases. Biotechnol Lett 28:207–213CrossRefPubMedGoogle Scholar
  63. Reis M, Albuquerque M, Villano M, Majone M (2011) Mixed culture processes for polyhydroxyalkanoate production from agro-industrial surplus/wastes as feedstocks. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic, Burlington, pp 669–683CrossRefGoogle Scholar
  64. Rontani J-F (2010) Production of wax esters by bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 459–470CrossRefGoogle Scholar
  65. Rothermich MM, Guerrero R, Lenz RW, Goodwin S (2000) Characterization, seasonal occurrence, and diel fluctuation of poly(hydroxyalkanoate) in photosynthetic microbial mats. Appl Environ Microbiol 66:4279–4291CrossRefPubMedPubMedCentralGoogle Scholar
  66. Röttig A, Steinbüchel A (2013) Acyltransferases in bacteria. Microbiol Mol Biol Rev 77:277–321CrossRefPubMedPubMedCentralGoogle Scholar
  67. Röttig A, Zurek PJ, Steinbüchel A (2015) Assessment of bacterial acyltransferases for an efficient lipid production in metabolically engineered strains of E. coli. Metab Eng 32:195–206CrossRefPubMedGoogle Scholar
  68. Samori C, Abbondanzi F, Galletti P, Giorgini L, Mazzocchetti L, Torri C, Tagliavini E (2015) Extraction of polyhydroxyalkanoates from mixed microbial cultures: impact on polymer quality and recovery. Bioresour Technol 189:195–202CrossRefPubMedGoogle Scholar
  69. Santala S, Efimova E, Kivinen V, Larjo A, Aho T, Karp M, Santala V (2011) Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering. Microb Cell Factories 10:36CrossRefGoogle Scholar
  70. Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008a) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81:615–628CrossRefPubMedGoogle Scholar
  71. Serafim LS, Lemos PC, Torres C, Reis MAM, Ramos AM (2008b) The influence of process parameters on the characteristics of polyhydroxyalkanoates produced by mixed cultures. Macromol Biosci 8:355–366CrossRefPubMedGoogle Scholar
  72. Serafim LS, Queirós D, Rossetti S, Lemos PC (2016) Biopolymer production by mixed-microbial cultures: integrating remediation with valorization. In: Koller M (ed) Recent advances in biotechnology – volume 1 – microbial polyester production, performance and processing – microbiology, feedstocks, and metabolism, 1st edn. Bentham Science Publishers, Sharjah, pp 226–264Google Scholar
  73. Shively JM (1974) Inclusion bodies of prokaryotes. Annu Rev Microbiol 28:167–188CrossRefPubMedGoogle Scholar
  74. Shively JM, Cannon GC, Heinhorst S, Bryant DA, DasSarma S, Bazylinski D, Preiss J, Steinbüchel A, Docampo R, Dahl C (2011) Bacterial and archaeal inclusions. In: eLS. Wiley, Chichester, pp 1–14Google Scholar
  75. Sirakova TD, Deb C, Daniel J, Singh HD, Maamar H, Dubey VS, Kolattukudy PE (2012) Wax ester synthesis is required for Mycobacterium tuberculosis to enter in vitro dormancy. PLoS One 7:e51641CrossRefPubMedPubMedCentralGoogle Scholar
  76. Slepecky RA, Law JH (1961) Synthesis and degradation of poly-beta-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J Bacteriol 82:37–42PubMedPubMedCentralGoogle Scholar
  77. Song JH, Jeon CO, Choi MH, Yoon SC, Park W (2008) Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol 18:1408–1415PubMedGoogle Scholar
  78. Steinbüchel A, Pieper U (1992) Production of a copolyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from single unrelated carbon sources by a mutant of Alcaligenes eutrophus. Appl Microbiol Biotechnol 37:1–6Google Scholar
  79. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228CrossRefGoogle Scholar
  80. Steinbüchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123PubMedGoogle Scholar
  81. Tamis J, Sorokin DY, Jiang Y, van Loosdrecht MCM, Kleerebezem R (2015) Lipid recovery from a vegetable oil emulsion using microbial enrichment cultures. Biotechnol Biofuels 8:39CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tan G-Y, Chen C-L, Li L, Ge L, Wang L, Razaad I, Li Y, Zhao L, Mo Y, Wang J-Y (2014) Start a research on biopolymer Polyhydroxyalkanoate (PHA): a review. Polymers (Basel) 6:706–754CrossRefGoogle Scholar
  83. Tanaka K, Ishizaki A, Kanamaru T, Kawano T (1995) Production of poly(D-3-hydroxybutyrate) from CO2, H2, and CO by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45:268–275CrossRefPubMedGoogle Scholar
  84. Tanaka K, Miyawaki K, Yamaguchi A, Khosravi-Darani K, Matsusaki H (2011) Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1. Appl Microbiol Biotechnol 92:1161–1169CrossRefPubMedGoogle Scholar
  85. Tsuge T, Hyakutake M, Mizuno K (2015) Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl Microbiol Biotechnol 99:6231–6240CrossRefPubMedGoogle Scholar
  86. Urmeneta J, Mas-Castella J, Guerrero R (1995) Biodegradation of poly-b-hydroxyalkanoates in a lake sediment sample increases bacterial sulfate reduction. Appl Environ Microbiol 61:2046–2048PubMedPubMedCentralGoogle Scholar
  87. Villanueva L, Del Campo J, Guerrero R (2010) Diversity and physiology of polyhydroxyalkanoate-producing and -degrading strains in microbial mats. FEMS Microbiol Ecol 74:42–54CrossRefPubMedGoogle Scholar
  88. Volova TG (2004) Polyhydroxyalkanoates – plastic materials of the 21st century: production, properties, applications. Nova Science Publishers, Inc., New YorkGoogle Scholar
  89. Wallen LL, Rohwedder WK (1974) Poly-b-hydroxyalkanoate from activated sludge. Environ Sci Technol 8:576–579CrossRefGoogle Scholar
  90. Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla H-J, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55(3):750–763CrossRefPubMedGoogle Scholar
  91. Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wältermann M, Stoveken T, Steinbuchel A (2007) Enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA:diacylglycerol acyltransferases. Biochimie 89:230–242CrossRefPubMedGoogle Scholar
  93. Wang Y, Yin J, Chen CQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65CrossRefPubMedGoogle Scholar
  94. Willis RM, Wahlen BD, Seefeldt LC, Barney BM (2011) Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol. Biochemistry 50:10550–10558CrossRefPubMedGoogle Scholar
  95. Wintermute EH, Silver PA (2010) Dynamics in the mixed microbial concourse. Genes Dev 24:2603–2614CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yan Y, Liao JC (2009) Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36:471–479CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Luísa S. Serafim
    • 1
  • Ana M. R. B. Xavier
    • 1
  • Paulo C. Lemos
    • 2
  1. 1.CICECO – Aveiro Institute of Materials, Departamento de QuímicaUniversidade de AveiroAveiroPortugal
  2. 2.LAQV-REQUIMTE, Departmento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de LisboaLisboaPortugal

Personalised recommendations