Landau-Lifshitz-Bloch Approach for Magnetization Dynamics Close to Phase Transition

  • Oksana Chubykalo-FesenkoEmail author
  • Pablo Nieves
Living reference work entry


Micromagnetic modeling has recommended itself as a useful tool for the design of magnetic nanostructures in multiple applications. The standard micromagnetics based on the integration of the Landau-Lifshitz-Gilbert equation is a valid approach at low temperatures only. In multiple recent applications such as heat-assisted magnetic recording or ultrafast magnetic dynamics, the temperatures often go close to the Curie temperature Tc and above. Here we review the micromagnetic approach valid in this temperature range, based on the use of the Landau-Lifshitz-Bloch equation. The essential part of this approach is the presence of the temperature-dependent longitudinal relaxation with the characteristic time diverging at Tc. We review this approach in its classical and quantum formulations and for one- and two-component materials. The behavior of longitudinal relaxation time is discussed. Finally, we present examples of the use of this micromagnetics related to the modeling of ultrafast magnetization dynamics.



This work was supported by the Spanish Ministry of Economy and Competitiveness under the project FIS201678591-C3-3-R. P.N. acknowledges support from EU Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No. 686056, NOVAMAG.


  1. Asselin P, Evans RFL, Barker J, Chantrell RW, Yanes R, Chubykalo-Fesenko O, Hinzke D, Nowak U (2010) Constrained monte carlo method and calculation of the temperature dependence of magnetic anisotropy. Phys Rev B 82:054415ADSCrossRefGoogle Scholar
  2. Atxitia U (2012) Modeling of ultrafast laser-induced magnetization dynamics within the Landau-Lifshitz-Bloch approach. PhD thesis, Instituto de Ciencia de Materiales de Madrid (ICMM) – Universidad Autónoma de MadridGoogle Scholar
  3. Atxitia U, Chubykalo-Fesenko O (2011) Ultrafast magnetization dynamics rates within the Landau-Lifshitz-Bloch model. Phys Rev B 84:144414ADSCrossRefGoogle Scholar
  4. Atxitia U, Chubykalo-Fesenko O, Kazantseva N, Hinzke D, Nowak U, Chantrell RW (2007) LLB-micromagnetic modelling of laser-induced magnetisation dynamics. Appl Phys Lett 91:232507ADSCrossRefGoogle Scholar
  5. Atxitia U, Chubykalo-Fesenko O, Walowski J, Mann A, Münzenberg M (2010a) Evidence for thermal mechanisms in laser-induced femtosecond spin dynamics. Phys Rev B 81:174401ADSCrossRefGoogle Scholar
  6. Atxitia U, Hinzke D, Chubykalo-Fesenko O, Nowak U, Kachkachi H, Mryasov ON, Evans RF, Chantrell RW (2010b) Multiscale modeling of magnetic materials: temperature dependence of the exchange stiffness. Phys Rev B 82:134440ADSCrossRefGoogle Scholar
  7. Atxitia U, Nieves P, Chubykalo-Fesenko O (2012) Landau-Lifshitz-Bloch equation for ferrimagnetic materials. Phys Rev B 86:104414ADSCrossRefGoogle Scholar
  8. Atxitia U, Barker J, Chantrell RW, Chubykalo-Fesenko O (2014) Controlling the polarity of the transient ferromagneticlike state in ferrimagnets. Phys Rev B 89:224421ADSCrossRefGoogle Scholar
  9. Atxitia U, Hinzke D, Nowak U (2016) Fundamentals and applications of the Landau-Lifshitz-Bloch equation. J Phys D Appl Phys 50:033003ADSCrossRefGoogle Scholar
  10. Battiato M, Barbalinardo G, Oppeneer PM (2014) Phys Rev B 89:014413ADSCrossRefGoogle Scholar
  11. Beaurepaire E, Merle JC, Daunois A, Bigot JY (1996) Ultrafast spins dynamics in ferromagnetic nickel. Phys Rev Lett 76:4250ADSCrossRefGoogle Scholar
  12. Bloch F (1946) Nuclear induction. Phys Rev 70:460ADSCrossRefGoogle Scholar
  13. Blum K (1981) Density matrix theory and applications. Plenum Press, New YorkCrossRefGoogle Scholar
  14. Brown WF (1963a) Micromagnetics. Wiley, New YorkzbMATHGoogle Scholar
  15. Brown WF (1963b) Thermal fluctuations of a single-domain particle. Phys Rev 130:1677ADSCrossRefGoogle Scholar
  16. Chantrell RW, Wongsam M, Schrefl T, Fidler J (2001) Micromagnetics I: basic principles. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of materials: science and technology. Elsevier, AmsterdamGoogle Scholar
  17. Chubykalo O, Hannay JD, Wongsam MA, Chantrell RW, González JM (2002) Langevin dynamic simulation of spin waves in a micromagnetic model. Phys Rev B 65:184428ADSCrossRefGoogle Scholar
  18. Chubykalo O, Smirnov-Rueda R, Wongsam MA, Chantrell RW, Nowak U, González JM (2003) Brownian dynamics approach to interacting magnetic moments. J Magn Magn Mat 266:28ADSCrossRefGoogle Scholar
  19. Chubykalo-Fesenko O, Nowak U, Chantrell RW, Garanin D (2006) Dynamic approach for micromagnetics close to the curie temperature. Phys Rev B 74:094436ADSCrossRefGoogle Scholar
  20. Coey J (2009) Magnetism and magnetic materials. Cambridge University Press, New YorkGoogle Scholar
  21. Eriksson O, Bergman A, Bergqvist L, Hellsvik J (2017) Atomistic spin dynamics foundations and applications. Oxford University Press, New YorkCrossRefGoogle Scholar
  22. Evans RFL, Hinzke D, Atxitia U, Nowak U, Chantrell RW, Chubykalo-Fesenko O (2012) Stochastic form of the Landau-Lifshitz-Bloch equation. Phys Rev B 85:014433ADSCrossRefGoogle Scholar
  23. Evans RFL, Fan WJ, Chureemart P, Ostler TA, Ellis MOA, Chantrell RW (2014) Atomistic spin model simulations of magnetic nanomaterials. J Phys Cond Mat 26:103202ADSCrossRefGoogle Scholar
  24. Fidler J, Schrefl T (2000) Micromagnetic modelling—the current state of the art. J Phys D Appl Phys 33:R135ADSCrossRefGoogle Scholar
  25. Garanin DA (1991) Generalized equation of motion for a ferromagnet. Phys A 172:470CrossRefGoogle Scholar
  26. Garanin DA (1997) Fokker-Planck and Landau-Lifshitz-Bloch equation for classical ferromagnets. Phys Rev B 55:3050ADSCrossRefGoogle Scholar
  27. Garanin DA (2012) Density matrix equation for a bathed small system and its application to molecular magnets. Adv Chem Phys 147:213Google Scholar
  28. Garanin DA, Chubykalo-Fesenko O (2004) Thermal fluctuations and longitudinal relaxation of single-domain magnetic particles at elevated temperatures. Phys Rev B 70:212409ADSCrossRefGoogle Scholar
  29. Garanin DA, Ishtchenko VV, Panina LV (1990) Theor Math Phys 82:169CrossRefGoogle Scholar
  30. García-Palacios JL, Lázaro FJ (1998) Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys Rev B 58:14937ADSCrossRefGoogle Scholar
  31. Gilbert T (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40:6CrossRefGoogle Scholar
  32. Greaves SJ, Muraoka H, Kanai Y (2015) Modelling of heat assisted magnetic recording with the landau-lifshitz-bloch equation and brillouin functions. J Appl Phys 117:17C505CrossRefGoogle Scholar
  33. Grinstein G, Koch RH (2003) Coarse graining in micromagnetics. Phys Rev Lett 90:207201ADSCrossRefGoogle Scholar
  34. Hertel R (2005) Theory of the inverse faraday effect in metals. J Magn Magn Mater 202:L1–L4ADSGoogle Scholar
  35. Hinzke D, Nowak U (2011) Domain wall motion by the magnonic spin seebeck effect. Phys Rev Lett 107:027205ADSCrossRefGoogle Scholar
  36. Hinzke D, Nowak U, Garanin DA (2000) Uniform susceptibility of classical antiferromagnets in one and two dimensions in a magnetic field. Euro Phys J B 16:435ADSCrossRefGoogle Scholar
  37. Hinzke D, Nowak U, Mryasov ON, Chantrell RW (2007) Orientation and temperature dependence of domain wall properties in FePt. Appl Phys Lett 90:082507ADSCrossRefGoogle Scholar
  38. Hinzke D, Atxitia U, Carva K, Nieves P, Fesenko-Chubykalo O, Oppeneer P, Nowak U (2015) Multiscale modeling of ultrafast element specific magnetization dynamics of ferromagnetic alloys. Phys Rev B 92:054412ADSCrossRefGoogle Scholar
  39. Janda T, Roy P, Otxoa R, Soban Z, Ramsay A, Irvine A, Trojanek F, Surynek M, Campion R, Gallagher B, Jungwirth T, Nemec P, Wunderlich J (2017) Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses. Nat Commun 8:15226ADSCrossRefGoogle Scholar
  40. John R, Berrita M, Hinzke D, Muller C, Santos T, Ulrichs H, Nieves P, Mondal R, Walowski J, Chubykalo-Fesenko O, McCord J, Oppenneer P, Nowak U, Muzenberg M (2017) Magnetization switching of FePt nanoparticle recording medium by femtosecond laser pulses. Sci Rep 7:4114ADSCrossRefGoogle Scholar
  41. Kachkachi H, Garanin D (2001) Magnetic free energy at elevated temperatures and hysteresis of magnetic particles. Phys A 291:485–500CrossRefGoogle Scholar
  42. Kazantseva N (2008) Dynamic response of the magnetisation to picosecond heat pulses. PhD thesis, University of YorkGoogle Scholar
  43. Kazantseva N, Hinzke D, Nowak U, Chantrell RW, Chubykalo-Fesenko O (2007) Atomistic models of ultrafast reversal. Phys Stat Sol 244:4389ADSCrossRefGoogle Scholar
  44. Kazantseva N, Hinzke D, Nowak U, Chantrell RW, Atxitia U, Chubykalo-Fesenko O (2008a) Towards multiscale modelling of magnetic materials: simulations of FePt. Phys Rev B 77:184428ADSCrossRefGoogle Scholar
  45. Kazantseva N, Nowak U, Chantrell RW, Hohlfeld J, Rebei A (2008b) Slow recovery of the magnetisation after a sub-picosecond heat-pulse. Europhys Lett 81:27004ADSCrossRefGoogle Scholar
  46. Kazantseva N, Hinzke D, Chantrell R, Nowak U (2009) Linear and elliptical magnetization reversal close to the curie temperature. Europhys Lett 86:27006ADSCrossRefGoogle Scholar
  47. Kimel AV, Kirilyuk A, Rasing T (2007) Femptosecond opto-magnetism: ultrafast laser manipulation. Laser Photonics Rev 1:275–287ADSCrossRefGoogle Scholar
  48. Kirilyuk A, Kimel AV, Rasing T (2010) Ultrafast optical manipulation of magnetic order. Rev Mod Phys 82:2731ADSCrossRefGoogle Scholar
  49. Koopmans B, Ruigrok JJM, Longa FD, de Jonge WJM (2005) Unifying ultrafast magnetization dynamics. Phys Rev Lett 95:267207ADSCrossRefGoogle Scholar
  50. Koopmans B, Malinowski G, Longa FD, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M (2010) Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat Mat 9:259–265CrossRefGoogle Scholar
  51. Lambert CH, Mangin S, Varaprasad BSDCS, Takahashi YK, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M, Fullerton EE (2014) All-optical control of ferromagnetic thin films and nanostructures. Science 345:1337ADSCrossRefGoogle Scholar
  52. Landau DL, Lifshitz E (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjetunion 8:153zbMATHGoogle Scholar
  53. Lyberatos A, Chantrell RW (1993) Thermal fluctuations in a pair of magnetostatistically coupled particles. J Appl Phys 73:6501ADSCrossRefGoogle Scholar
  54. McDaniel TW (2012) Application of Landau-Lifshitz-Bloch dynamics to grain switching in heat-assisted magnetic recording. J Appl Phys 112:013914ADSCrossRefGoogle Scholar
  55. Mendil J, Nieves P, Chubykalo-Fesenko O, Walowski J, Santos T, Pisana S, Münzenberg M (2014) Resolving the role of femtosecond heated electrons in ultrafast spin dynamics. Sci Rep 4:3980ADSCrossRefGoogle Scholar
  56. Moreno R, Evans R, Khmelevskyi S, Munoz M, Chantrell R, Chubykalo-Fesenko O (2016) Temperature-dependent exchange stiffness and domain wall width in co. Phys Rev B 94:104433ADSCrossRefGoogle Scholar
  57. Nakatani Y, Uesaka Y, Hayashi N, Fukushima H (1997) Computer simulation of thermal fluctuation of fine particle magnetization based on Langevin equation. J Magn Magn Mat 168:347ADSCrossRefGoogle Scholar
  58. Nieves P (2015) Micromagnetic models for high-temperature magnetization dynamics. PhD thesis, Instituto de Ciencia de Materiales de Madrid (ICMM) – Universidad Autónoma de MadridGoogle Scholar
  59. Nieves P, Chubykalo-Fesenko O (2016) Modeling of ultrafast heat- and field-assisted magnetization dynamics in FePt. Phys Rev Appl 5:014006ADSCrossRefGoogle Scholar
  60. Nieves P, Serantes D, Atxitia U, Chubykalo-Fesenko O (2014) The quantum Landau-Lifshitz-Bloch equation and its comparison with the classical case. Phys Rev B 90:104428ADSCrossRefGoogle Scholar
  61. Nieves P, Atxitia U, Chantrell RW, Chubykalo-Fesenko O (2015) The classical two sublattice Landau-Lifshitz-Bloch equation at all temperatures. Low Temp Phys 41:949CrossRefGoogle Scholar
  62. Nieves P, Serantes D, Chubykalo-Fesenko O (2016) Self-consistent description of spin-phonon dynamics in ferromagnets. Phys Rev B 94:014409ADSCrossRefGoogle Scholar
  63. Nieves P, Arapan S, Schrefl T, Cuesta-Lopez S (2017) Atomistic spin dynamics simulations of the MnAl τ-phase and its antiphase boundary. Phys Rev B 96:224411ADSCrossRefGoogle Scholar
  64. Ostler TA, Evans RFL, Chantrell RW, Atxitia U, Chubykalo-Fesenko O, Radu I, Abrudan R, Radu F, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel A (2011) Crystallographically amorphous ferrimagnetic alloys: comparing a localized atomistic spin model with experiments. Phys Rev B 84:024407ADSCrossRefGoogle Scholar
  65. Ostler T, Barker J, Evans R, Chantrell R, Atxitia U, Chubykalo-Fesenko O, Moussaoui SE, Guyader LL, Mengotti E, Heyderman L, Nolting F, Tsukamoto A, Itoh A, Afanasiev D, Ivanov B, Kalashnikova A, Vahaplar K, Mentink J, Kirilyuk A, Rasing T, Kimel A (2012) Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat Commun 3:666CrossRefGoogle Scholar
  66. Schieback C, Hinzke D, Kläui M, Nowak U, Nielaba P (2009) Temperature dependence of the current-induced domain wall motion from a modified Landau-Lifshitz-Bloch equation. Phys Rev B 80:214403ADSCrossRefGoogle Scholar
  67. Schlickeiser F, Atxitia U, Wienholdt S, Hinzke D, Chubykalo-Fesenko O, Nowak U (2012) Temperature dependence of the frequencies and effective damping parameters of ferrimagnetic resonance. Phys Rev B 86:214416ADSCrossRefGoogle Scholar
  68. Schlickeiser F, Ritzmann U, Hinzke D, Nowak U (2014) Role of entropy in domain wall motion in thermal gradients. Phys Rev Lett 113:097201ADSCrossRefGoogle Scholar
  69. Scholz W, Schrefl T, Fidler J (2001) Micromagnetic simulation of thermally activated switching in fine particles. J Magn Magn Mat 233:296ADSCrossRefGoogle Scholar
  70. Skubic B, Hellsvik J, Nordström L, Eriksson O (2008) A method for atomistic spin dynamics simulations: implementation and examples. J Phys Condens Matter 20:315203CrossRefGoogle Scholar
  71. Suarez O, Nieves P, Laroze D, Altbir D, Chubykalo-Fesenko O (2015) The ultra-fast relaxation rates and reversal time in disordered ferrimagnets. Phys Rev B 92:144425ADSCrossRefGoogle Scholar
  72. Sultan M, Atxitia U, Melnikov A, Chubykalo-Fesenko O, Bovensiepen U (2012) Electron- and phonon-mediated ultrafast magnetization dynamics of Gd(0001). Phys Rev B 85:184407ADSCrossRefGoogle Scholar
  73. Takano K, Jin E, Zhou D, Maletzky T, Smyth J, Dovek M (2011) Thermo-dynamic magnetisation model of thermally assisted magnetic recording by Landau-Lifshitz-Bloch equation. J Magn Soc Jpn 35:431CrossRefGoogle Scholar
  74. Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E (2008) Observation of the spin Seebeck effect. Nature 455:778ADSCrossRefGoogle Scholar
  75. Vahaplar K, Kalashnikova AM, Kimel A, Hinzke D, Nowak U, Chantrell R, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T (2009) Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state. Phys Rev Lett 103:117201ADSCrossRefGoogle Scholar
  76. Vahaplar K, Kalashnikova AM, Kimel A, Gerlach S, Hinzke D, Nowak U, Chantrell R, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T (2012) All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling. Phys Rev B 85:104402ADSCrossRefGoogle Scholar
  77. Vogler C, Abert C, Bruckner F, Suess D (2014) Landeu-Lifshits-Bloch equation for exchange-coupled grains. Phys Rev B 90:214431ADSCrossRefGoogle Scholar
  78. Vogler C, Abert C, Bruckner F, Suess D, Praetorius D (2016) Areal density optimizations for heat-assisted magnetic recording of high-density media. J Appl Phys 120:223903ADSCrossRefGoogle Scholar
  79. Vogler C, Abert C, Bruckner F, Suess D (2018) Stochastic ferrimagnetic Landau-Lifshitz-Bloch equation for finite magnetic structures. arXiv:180401724Google Scholar
  80. Xu L, Zhang S (2012) Magnetization dynamics at elevated temperatures. Phys E 45:72CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciencia de Materiales de MadridSpanish National Research Council – CSICMadridSpain
  2. 2.International Research Center in Critical Raw Materials and Advanced Industrial TechnologiesUniversidad de BurgosBurgosSpain

Section editors and affiliations

  • Stefano Sanvito
    • 1
  1. 1.Department of PhysicsTrinity CollegeDublinIreland

Personalised recommendations